Skip to main content
Log in

How cholesterol is distributed between monolayers in asymmetric lipid membranes

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The distribution of cholesterol in asymmetric lipid bilayers was studied by extensive coarse-grained molecular dynamics simulations. The effects of the lipid head group charge, acyl chain saturation, spontaneous membrane curvature and surface tension of the membrane were investigated. Four asymmetric bilayers containing DOPC, DOPS, DSPC or DSPS lipids were simulated on a time scale extended to tens of microseconds. We show that cholesterol strongly prefers anionic lipids to neutral and saturated lipid tails to unsaturated with a distribution ratio of ~0.7 in neutral/anionic bilayers and of ~0.4 in unsaturated/saturated bilayers. Multiple flip-flop transitions of cholesterol were observed directly, and their mean times ranged from 80 to 250 ns. It was shown that the distribution of cholesterol in the asymmetric membrane depends not only on the type of lipid, but also on the local membrane curvature and the surface tension. The membrane curvature enhances the influence of the lipid head groups on cholesterol distribution, while non-optimal surface tension caused by different areas per lipid in different monolayers increases the effect of the lipid tail saturation. It was clearly seen that the monolayers of asymmetric bilayers are interdependent. Mean distances from the bilayer center to cholesterol molecules depend not only on the type of the lipid in the considered monolayer but also on the composition of the opposite monolayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali MR, Cheng KH, Huang J (2007) Assess the nature of cholesterol-lipid interactions through the chemical potential of cholesterol in phosphatidylcholine bilayers. Proc Natl Acad Sci U S A 104:5372–5377

    Article  PubMed  CAS  Google Scholar 

  • Bennett WFD, MacCallum JL, Hinner MJ, Marrink SJ, Tieleman DP (2009) Molecular view of cholesterol flip-flop and chemical potential in different membrane environments. J Am Chem Soc 131:12714–12720

    Article  PubMed  CAS  Google Scholar 

  • Berkowitz ML (2009) Detailed molecular dynamics simulations of model biological membranes containing cholesterol. Biochim Biophys Acta 1788:86–96

    Article  PubMed  CAS  Google Scholar 

  • Brasaemle DL, Robertson AD, Attie AD (1988) Transbilayer movement of cholesterol in the human erythrocyte membrane. J Lipid Res 29:481–489

    PubMed  CAS  Google Scholar 

  • Chiu SW, Jakobsson E, Mashl RJ, Scott HL (2002) Cholesterol-induced modifications in lipid bilayers: a simulation study. Biophys J 83:1842–1853

    Article  PubMed  CAS  Google Scholar 

  • Contreras FX, Sanchez-Magraner L, Alonso A, Goni FM (2010) Transbilayer (flip-flop) lipid motion and lipid scrambling in membranes. FEBS Lett 584:1779–1786

    Article  PubMed  CAS  Google Scholar 

  • Demchenko AP, Yesylevskyy SO (2009) Nanoscopic description of biomembrane electrostatics: results of molecular dynamics simulations and fluorescence probing. Chem Phys Lipids 160:63–84

    Article  PubMed  CAS  Google Scholar 

  • Falck E, Patra M, Karttunen M, Hyvцnen MT, Vattulainen I (2004) Lessons of slicing membranes: interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers. Biophys J 87:1076–1091

    Article  PubMed  CAS  Google Scholar 

  • Fisher KA (1976) Analysis of membrane halves: cholesterol. Proc Natl Acad Sci U S A 73:173–177

    Article  PubMed  CAS  Google Scholar 

  • Garg S, Porcar L, Woodka AC, Butler PD, Perez-Salas U (2011) Noninvasive neutron scattering measurements reveal slower cholesterol transport in model lipid membranes. Biophys J 101:370–377

    Article  PubMed  CAS  Google Scholar 

  • Gimpl G, Gehrig-Burger K (2011) Probes for studying cholesterol binding and cell biology. Steroids 76:216–231

    Article  PubMed  CAS  Google Scholar 

  • Hale JE, Schroeder F (1982) Asymmetric transbilayer distribution of sterol across plasma membranes determined by fluorescence quenching of dehydroergosterol. Euro J Biochem 122:649–661

    Article  CAS  Google Scholar 

  • Hamilton JA (2003) Fast flip-flop of cholesterol and fatty acids in membranes: implications for membrane transport proteins. Curr Opin Lipidol 14:263–271

    Article  PubMed  CAS  Google Scholar 

  • Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theor Comp 4:435–447

    Article  CAS  Google Scholar 

  • Hofsäß C, Lindahl E, Edholm O (2003) Molecular dynamics simulations of phospholipid bilayers with cholesterol. Biophys J 84:2192–2206

    Article  PubMed  Google Scholar 

  • Ikonen E (2008) Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol 9:125–138

    Article  PubMed  CAS  Google Scholar 

  • Kiessling V, Wan C, Tamm LK (2009) Domain coupling in asymmetric lipid bilayers. Biochim Biophys Acta 1788:64–71

    Article  PubMed  CAS  Google Scholar 

  • Kučerka N, Perlmutter JD, Pan J, Tristram-Nagle S, Katsaras J, Sachs JN (2008) The Effect of cholesterol on short- and long-chain monounsaturated lipid bilayers as determined by molecular dynamics simulations and X-ray scattering. Biophys J 95:2792–2805

    Article  PubMed  Google Scholar 

  • Lange Y, Steck TL (2008) Cholesterol homeostasis and the escape tendency (activity) of plasma membrane cholesterol. Prog Lipid Res 47:319–332

    Article  PubMed  CAS  Google Scholar 

  • Lindahl E, Edholm O (2000) Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys J 79:426–433

    Article  PubMed  CAS  Google Scholar 

  • Lopez CA, Rzepiela AJ, de Vries AH, Dijkhuizen L, Hunenberger PH, Marrink SJ (2009) Martini coarse-grained force field: extension to carbohydrates. J Chem Theory Comput 5:3195–3210

    Article  CAS  Google Scholar 

  • Marrink SJ, Mark AE (2001) Effect of undulations on surface tension in simulated bilayers. J Phys Chem B 105:6122–6127

    Article  CAS  Google Scholar 

  • Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Chem Phys 108:750–760

    CAS  Google Scholar 

  • Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    Article  PubMed  CAS  Google Scholar 

  • Marrink SJ, de Vries AH, Harroun TA, Katsaras J, Wassall SR (2008) Cholesterol shows preference for the interior of polyunsaturated lipid membranes. J Am Chem Soc 130:10–11

    Article  PubMed  CAS  Google Scholar 

  • Mondal M, Mesmin B, Mukherjee S, Maxfield FR (2009) Sterols are mainly in the cytoplasmic leaflet of the plasma membrane and the endocytic recycling compartment in CHO cells. Mol Biol Cell 20:581–588

    Article  PubMed  CAS  Google Scholar 

  • Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput 4:819–834

    Article  CAS  Google Scholar 

  • Niemelä PS, Ollila S, Hyvönen MT, Karttunen M, Vattulainen I (2007) Assessing the nature of lipid raft membranes. PLoS Comput Biol 3:e34

    Article  PubMed  Google Scholar 

  • Ohvo-Rekila H, Ramstedt B, Leppimaki P, Slotte JP (2002) Cholesterol interactions with phospholipids in membranes. Prog Lipid Res 41:66–97

    Article  PubMed  CAS  Google Scholar 

  • Poger D, Mark AE (2010) On the validation of molecular dynamics simulations of saturated and cis-monounsaturated phosphatidylcholine lipid bilayers: a comparison with experiment. J Chem Theory Comput 6:325–336

    Article  CAS  Google Scholar 

  • Radhakrishnan A, McConnell H (2005) Condensed complexes in vesicles containing cholesterol and phospholipids. Proc Natl Acad Sci U S A 102:12662–12666

    Article  PubMed  CAS  Google Scholar 

  • Ramstedt B, Slotte JP (2002) Membrane properties of sphingomyelins. FEBS Lett 531:33–37

    Article  PubMed  CAS  Google Scholar 

  • Róg T Pasenkiewicz-Gierula M Vattulainen I Karttunen M (2009) Ordering effects of cholesterol and its analogues. Biochimica et Biophysica Acta (BBA)—Biomembranes 1788 97–121

    Google Scholar 

  • Steck TL, Ye J, Lange Y (2002) Probing red cell membrane cholesterol movement with cyclodextrin. Biophys J 83:2118–2125

    Article  PubMed  CAS  Google Scholar 

  • van Meer G (2005) Cellular lipidomics. EMBO J 24:3159–3165

    Article  PubMed  Google Scholar 

  • Waheed Q, Edholm O (2009) Undulation contributions to the area compressibility in lipid bilayer simulations. Biophys J 97:2754–2760

    Article  PubMed  CAS  Google Scholar 

  • Yesylevskyy SO Pteros: fast and easy to use open-source C++ library for molecular analysis. J Comput Chem (2012) n/a-n/a

  • Zhang Z, Lu L, Berkowitz ML (2008) Energetics of cholesterol transfer between lipid bilayers. J Physi Chem B 112:3807–3811

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Ukrainian National Grid Technologies Program, project “Hardware and software complex for modeling and analysis of natural and artificial nanosystems in the Grid environment,” and by STCU grant 5525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semen O. Yesylevskyy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yesylevskyy, S.O., Demchenko, A.P. How cholesterol is distributed between monolayers in asymmetric lipid membranes. Eur Biophys J 41, 1043–1054 (2012). https://doi.org/10.1007/s00249-012-0863-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-012-0863-z

Keywords

Navigation