Skip to main content
Log in

Structure–function correlations of pulmonary surfactant protein SP-B and the saposin-like family of proteins

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Pulmonary surfactant is a lipid-protein complex secreted by the respiratory epithelium of mammalian lungs, which plays an essential role in stabilising the alveolar surface and so reducing the work of breathing. The surfactant protein SP-B is part of this complex, and is strictly required for the assembly of pulmonary surfactant and its extracellular development to form stable surface-active films at the air–liquid alveolar interface, making the lack of SP-B incompatible with life. In spite of its physiological importance, a model for the structure and the mechanism of action of SP-B is still needed. The sequence of SP-B is homologous to that of the saposin-like family of proteins, which are membrane-interacting polypeptides with apparently diverging activities, from the co-lipase action of saposins to facilitate the degradation of sphingolipids in the lysosomes to the cytolytic actions of some antibiotic proteins, such as NK-lysin and granulysin or the amoebapore of Entamoeba histolytica. Numerous studies on the interactions of these proteins with membranes have still not explained how a similar sequence and a potentially related fold can sustain such apparently different activities. In the present review, we have summarised the most relevant features of the structure, lipid-protein and protein–protein interactions of SP-B and the saposin-like family of proteins, as a basis to propose an integrated model and a common mechanistic framework of the apparent functional versatility of the saposin fold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahn VE, Faull KF, Whitelegge JP, Fluharty AL, Prive GG (2003) Crystal structure of saposin B reveals a dimeric shell for lipid binding. Proc Natl Acad Sci USA 100:38–43

    Article  CAS  PubMed  Google Scholar 

  • Ahn VE, Leyko P, Alattia JR, Chen L, Prive GG (2006) Crystal structures of saposins A and C. Protein Sci 15:1849–1857

    Article  CAS  PubMed  Google Scholar 

  • Anderson DH, Sawaya MR, Cascio D, Ernst W, Modlin R, Krensky A, Eisenberg D (2003) Granulysin crystal structure and a structure-derived lytic mechanism. J Mol Biol 325:355–365

    Article  CAS  PubMed  Google Scholar 

  • Andersson M, Curstedt T, Jornvall H, Johansson J (1995) An amphipathic helical motif common to tumourolytic polypeptide NK-lysin and pulmonary surfactant polypeptide SP-B. FEBS Lett 362:328–332

    Article  CAS  PubMed  Google Scholar 

  • Ariki S, Kojima T, Gasa S, Saito A, Nishitani C, Takahashi M, Shimizu T, Kurimura Y, Sawada N, Fujii N, Kuroki Y (2011) Pulmonary collectins play distinct roles in host defense against Mycobacterium avium. J Immunol 187:2586–2594

    Article  CAS  PubMed  Google Scholar 

  • Baatz JE, Elledge B, Whitsett JA (1990) Surfactant protein SP-B induces ordering at the surface of model membrane bilayers. Biochemistry 29:6714–6720

    Article  CAS  PubMed  Google Scholar 

  • Baatz JE, Zou Y, Cox JT, Wang Z, Notter RH (2001) High-yield purification of lung surfactant proteins sp-b and sp-c and the effects on surface activity. Protein Expr Purif 23:180–190

    Article  CAS  PubMed  Google Scholar 

  • Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041

    Article  CAS  PubMed  Google Scholar 

  • Banares-Hidalgo A, Bolanos-Gutierrez A, Gil F, Cabre EJ, Perez-Gil J, Estrada P (2008) Self-aggregation of a recombinant form of the propeptide NH2-terminal of the precursor of pulmonary surfactant protein SP-B: a conformational study. J Ind Microbiol Biotechnol 35:1367–1376

    Article  CAS  PubMed  Google Scholar 

  • Baoukina S, Tieleman DP (2010) Direct simulation of protein-mediated vesicle fusion: lung surfactant protein B. Biophys J 99:2134–2142

    Article  CAS  PubMed  Google Scholar 

  • Beck DC, Ikegami M, Na CL, Zaltash S, Johansson J, Whitsett JA, Weaver TE (2000) The role of homodimers in surfactant protein B function in vivo. J Biol Chem 275:3365–3370

    Article  CAS  PubMed  Google Scholar 

  • Bernardino de la Serna J, Vargas R, Picardi MV, Cruz A, Arranz R, Valpuesta JM, Mateu L, Perez-Gil J (2012) Segregated ordered lipid phases and protein-promoted membrane cohesivity are required for pulmonary surfactant films to stabilize and protect the respiratory surface. Faraday Disc. doi:10.1039/C2FD20096A

  • Blanco O, Perez-Gil J (2007) Biochemical and pharmacological differences between preparations of exogenous natural surfactant used to treat Respiratory Distress Syndrome: role of the different components in an efficient pulmonary surfactant. Eur J Pharmacol 568:1–15

    Article  CAS  PubMed  Google Scholar 

  • Brasch F, Johnen G, Winn-Brasch A, Guttentag SH, Schmiedl A, Kapp N, Suzuki Y, Muller KM, Richter J, Hawgood S, Ochs M (2004) Surfactant protein B in type II pneumocytes and intra-alveolar surfactant forms of human lungs. Am J Respir Cell Mol Biol 30:449–458

    Article  CAS  PubMed  Google Scholar 

  • Bruhn H (2005) A short guided tour through functional and structural features of saposin-like proteins. Biochem J 389:249–257

    Article  CAS  PubMed  Google Scholar 

  • Bruhn H, Riekens B, Berninghausen O, Leippe M (2003) Amoebapores and NK-lysin, members of a class of structurally distinct antimicrobial and cytolytic peptides from protozoa and mammals: a comparative functional analysis. Biochem J 375:737–744

    Article  CAS  PubMed  Google Scholar 

  • Bryksa BC, Bhaumik P, Magracheva E, De Moura DC, Kurylowicz M, Zdanov A, Dutcher JR, Wlodawer A, Yada RY (2011) Structure and mechanism of the saposin-like domain of a plant aspartic protease. J Biol Chem 286:28265–28275

    Article  CAS  PubMed  Google Scholar 

  • Bunger H, Kruger RP, Pietschmann S, Wustneck N, Kaufner L, Tschiersch R, Pison U (2001) Two hydrophobic protein fractions of ovine pulmonary surfactant: isolation, characterization, and biophysical activity. Protein Expr Purif 23:319–327

    Article  CAS  PubMed  Google Scholar 

  • Cabre EJ, Malmstrom J, Sutherland D, Perez-Gil J, Otzen DE (2009) Surfactant protein SP-B strongly modifies surface collapse of phospholipid vesicles: insights from a quartz crystal microbalance with dissipation. Biophys J 97:768–776

    Article  CAS  PubMed  Google Scholar 

  • Cabre EJ, Loura LM, Fedorov A, Perez-Gil J, Prieto M (2012) Topology and lipid selectivity of pulmonary surfactant protein SP-B in membranes: answers from fluorescence. Biochim Biophys Acta 1818:1717–1725

    Article  CAS  PubMed  Google Scholar 

  • Chang R, Nir S, Poulain FR (1998) Analysis of binding and membrane destabilization of phospholipid membranes by surfactant apoprotein B. Biochim Biophys Acta 1371:254–264

    Article  CAS  PubMed  Google Scholar 

  • Chavarha M, Khoojinian H, Schulwitz LE Jr, Biswas SC, Rananavare SB, Hall SB (2010) Hydrophobic surfactant proteins induce a phosphatidylethanolamine to form cubic phases. Biophys J 98:1549–1557

    Article  CAS  PubMed  Google Scholar 

  • Clark JC, Wert SE, Bachurski CJ, Stahlman MT, Stripp BR, Weaver TE, Whitsett JA (1995) Targeted disruption of the surfactant protein B gene disrupts surfactant homeostasis, causing respiratory failure in newborn mice. Proc Natl Acad Sci USA 92:7794–7798

    Article  CAS  PubMed  Google Scholar 

  • Cruz A, Casals C, Keough KM, Perez-Gil J (1997) Different modes of interaction of pulmonary surfactant protein SP-B in phosphatidylcholine bilayers. Biochem J 327(Pt 1):133–138

    CAS  PubMed  Google Scholar 

  • Cruz A, Casals C, Plasencia I, Marsh D, Perez-Gil J (1998) Depth profiles of pulmonary surfactant protein B in phosphatidylcholine bilayers, studied by fluorescence and electron spin resonance spectroscopy. Biochemistry 37:9488–9496

    Article  CAS  PubMed  Google Scholar 

  • Cruz A, Worthman LA, Serrano AG, Casals C, Keough KM, Perez-Gil J (2000) Microstructure and dynamic surface properties of surfactant protein SP-B/dipalmitoylphosphatidylcholine interfacial films spread from lipid-protein bilayers. Eur Biophys J 29:204–213

    Article  CAS  PubMed  Google Scholar 

  • Cruz A, Vazquez L, Velez M, Perez-Gil J (2004) Effect of pulmonary surfactant protein SP-B on the micro- and nanostructure of phospholipid films. Biophys J 86:308–320

    Article  CAS  PubMed  Google Scholar 

  • de Alba E, Weiler S, Tjandra N (2003) Solution structure of human saposin C: pH-dependent interaction with phospholipid vesicles. Biochemistry 42:14729–14740

    Article  PubMed  CAS  Google Scholar 

  • Flach CR, Cai P, Dieudonne D, Brauner JW, Keough KM, Stewart J, Mendelsohn R (2003) Location of structural transitions in an isotopically labeled lung surfactant SP-B peptide by IRRAS. Biophys J 85:340–349

    Article  CAS  PubMed  Google Scholar 

  • Foster CD, Zhang PX, Gonzales LW, Guttentag SH (2003) In vitro surfactant protein B deficiency inhibits lamellar body formation. Am J Respir Cell Mol Biol 29:259–266

    Article  CAS  PubMed  Google Scholar 

  • Frey SL, Pocivavsek L, Waring AJ, Walther FJ, Hernandez-Juviel JM, Ruchala P, Lee KY (2010) Functional importance of the NH2-terminal insertion sequence of lung surfactant protein B. Am J Physiol Lung Cell Mol Physiol 298:L335–L347

    Article  CAS  PubMed  Google Scholar 

  • Fullagar WK, Aberdeen KA, Bucknall DG, Kroon PA, Gentle IR (2003) Conformational changes in SP-B as a function of surface pressure. Biophys J 85:2624–2632

    Article  CAS  PubMed  Google Scholar 

  • Funk CJ, Wang J, Ito Y, Travanty EA, Voelker DR, Holmes KV, Mason RJ (2011) Infection of human alveolar macrophages by coronavirus 229E. J Gen Virol 93:494–503

    Google Scholar 

  • Glasser SW, Burhans MS, Korfhagen TR, Na CL, Sly PD, Ross GF, Ikegami M, Whitsett JA (2001) Altered stability of pulmonary surfactant in SP-C-deficient mice. Proc Natl Acad Sci USA 98:6366–6371

    Article  CAS  PubMed  Google Scholar 

  • Glasser SW, Detmer EA, Ikegami M, Na CL, Stahlman MT, Whitsett JA (2003) Pneumonitis and emphysema in sp-C gene targeted mice. J Biol Chem 278:14291–14298

    Article  CAS  PubMed  Google Scholar 

  • Goerke J (1998) Pulmonary surfactant: functions and molecular composition. Biochim Biophys Acta 1408:79–89

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Gil L, Schurch D, Goormaghtigh E, Perez-Gil J (2009) Pulmonary surfactant protein SP-C counteracts the deleterious effects of cholesterol on the activity of surfactant films under physiologically relevant compression-expansion dynamics. Biophys J 97:2736–2745

    Article  CAS  PubMed  Google Scholar 

  • Gordon LM, Horvath S, Longo ML, Zasadzinski JA, Taeusch HW, Faull K, Leung C, Waring AJ (1996) Conformation and molecular topography of the N-terminal segment of surfactant protein B in structure-promoting environments. Protein Sci 5:1662–1675

    Article  CAS  PubMed  Google Scholar 

  • Gutsmann T, Riekens B, Bruhn H, Wiese A, Seydel U, Leippe M (2003) Interaction of amoebapores and NK-lysin with symmetric phospholipid and asymmetric lipopolysaccharide/phospholipid bilayers. Biochemistry 42:9804–9812

    Article  CAS  PubMed  Google Scholar 

  • Haagsman HP, Diemel RV (2001) Surfactant-associated proteins: functions and structural variation. Comp Biochem Physiol A: Mol Integr Physiol 129:91–108

    Article  CAS  Google Scholar 

  • Halliday HL (2008) Surfactants: past, present and future. J Perinatol 28(Suppl 1):S47–S56

    Article  CAS  PubMed  Google Scholar 

  • Hawgood S, Derrick M, Poulain F (1998) Structure and properties of surfactant protein B. Biochim Biophys Acta 1408:150–160

    Article  CAS  PubMed  Google Scholar 

  • Hawkins CA, de Alba E, Tjandra N (2005) Solution structure of human saposin C in a detergent environment. J Mol Biol 346:1381–1392

    Article  CAS  PubMed  Google Scholar 

  • Hecht O, Van Nuland NA, Schleinkofer K, Dingley AJ, Bruhn H, Leippe M, Grotzinger J (2004) Solution structure of the pore-forming protein of Entamoeba histolytica. J Biol Chem 279:17834–17841

    Article  CAS  PubMed  Google Scholar 

  • Ikegami M, Takabatake N, Weaver TE (2002) Intersubunit disulfide bridge is not required for the protective role of SP-B against lung inflammation. J Appl Physiol 93:505–511

    CAS  PubMed  Google Scholar 

  • Johansson J, Curstedt T (1997) Molecular structures and interactions of pulmonary surfactant components. Eur J Biochem 244:675–693

    Article  CAS  PubMed  Google Scholar 

  • Johansson J, Curstedt T, Jornvall H (1991) Surfactant protein B: disulfide bridges, structural properties, and kringle similarities. Biochemistry 30:6917–6921

    Article  CAS  PubMed  Google Scholar 

  • Kaznessis YN, Kim S, Larson RG (2002) Specific mode of interaction between components of model pulmonary surfactants using computer simulations. J Mol Biol 322:569–582

    Article  CAS  PubMed  Google Scholar 

  • Kervinen J, Tobin GJ, Costa J, Waugh DS, Wlodawer A, Zdanov A (1999) Crystal structure of plant aspartic proteinase prophytepsin: inactivation and vacuolar targeting. EMBO J 18:3947–3955

    Article  CAS  PubMed  Google Scholar 

  • Krol S, Ross M, Sieber M, Kunneke S, Galla HJ, Janshoff A (2000) Formation of three-dimensional protein-lipid aggregates in monolayer films induced by surfactant protein B. Biophys J 79:904–918

    Article  CAS  PubMed  Google Scholar 

  • Kurutz JW, Lee KY (2002) NMR structure of lung surfactant peptide SP-B(11–25). Biochemistry 41:9627–9636

    Article  CAS  PubMed  Google Scholar 

  • Leippe M, Bruhn H, Hecht O, Grotzinger J (2005) Ancient weapons: the three-dimensional structure of amoebapore A. Trends Parasitol 21:5–7

    Article  CAS  PubMed  Google Scholar 

  • Leon L, Tatituri RV, Grenha R, Sun Y, Barral DC, Minnaard AJ, Bhowruth V, Veerapen N, Besra GS, Kasmar A, Peng W, Moody DB, Grabowski GA, Brenner MB (2012) Saposins utilize two strategies for lipid transfer and CD1 antigen presentation. Proc Natl Acad Sci USA 109:4357–4364

    Article  CAS  PubMed  Google Scholar 

  • Lewis JF, Veldhuizen R (2003) The role of exogenous surfactant in the treatment of acute lung injury. Annu Rev Physiol 65:613–642

    Article  CAS  PubMed  Google Scholar 

  • Liepinsh E, Andersson M, Ruysschaert JM, Otting G (1997) Saposin fold revealed by the NMR structure of NK-lysin. Nat Struct Biol 4:793–795

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Akinbi HT, Breslin JS, Weaver TE (1996) Structural requirements for targeting of surfactant protein B (SP-B) to secretory granules in vitro and in vivo. J Biol Chem 271:19689–19695

    Article  CAS  PubMed  Google Scholar 

  • Liu A, Wenzel N, Qi X (2005) Role of lysine residues in membrane anchoring of saposin C. Arch Biochem Biophys 443:101–112

    Article  CAS  PubMed  Google Scholar 

  • Madala SK, Maxfield MD, Davidson CR, Schmidt SM, Garry D, Ikegami M, Hardie WD, Glasser SW (2011) Rapamycin regulates bleomycin-induced lung damage in SP-C-deficient mice. Pulm Med 2011:653524

    PubMed  Google Scholar 

  • Manzanares D, Rodriguez-Capote K, Liu S, Haines T, Ramos Y, Zhao L, Doherty-Kirby A, Lajoie G, Possmayer F (2007) Modification of tryptophan and methionine residues is implicated in the oxidative inactivation of surfactant protein B. Biochemistry 46:5604–5615

    Article  CAS  PubMed  Google Scholar 

  • Maruscak A, Lewis JF (2006) Exogenous surfactant therapy for ARDS. Expert Opin Investig Drugs 15:47–58

    Article  CAS  PubMed  Google Scholar 

  • Matthay MA, Zemans RL (2010) The acute respiratory distress syndrome: pathogenesis and treatment. Annu Rev Pathol 6:147–163

    Article  CAS  Google Scholar 

  • Melton KR, Nesslein LL, Ikegami M, Tichelaar JW, Clark JC, Whitsett JA, Weaver TE (2003) SP-B deficiency causes respiratory failure in adult mice. Am J Physiol Lung Cell Mol Physiol 285:L543–L549

    CAS  PubMed  Google Scholar 

  • Meyer KC, Zimmerman JJ (2002) Inflammation and surfactant. Paediatr Respir Rev 3:308–314

    Article  PubMed  CAS  Google Scholar 

  • Mingarro I, Lukovic D, Vilar M, Perez-Gil J (2008) Synthetic pulmonary surfactant preparations: new developments and future trends. Curr Med Chem 15:393–403

    Article  CAS  PubMed  Google Scholar 

  • Miteva M, Andersson M, Karshikoff A, Otting G (1999) Molecular electroporation: a unifying concept for the description of membrane pore formation by antibacterial peptides, exemplified with NK-lysin. FEBS Lett 462:155–158

    Article  CAS  PubMed  Google Scholar 

  • Morrow MR, Perez-Gil J, Simatos G, Boland C, Stewart J, Absolom D, Sarin V, Keough KM (1993) Pulmonary surfactant-associated protein SP-B has little effect on acyl chains in dipalmitoylphosphatidylcholine dispersions. Biochemistry 32:4397–4402

    Article  CAS  PubMed  Google Scholar 

  • Morrow MR, Stewart J, Taneva S, Dico A, Keough KM (2004) Perturbation of DPPC bilayers by high concentrations of pulmonary surfactant protein SP-B. Eur Biophys J 33:285–290

    Article  CAS  PubMed  Google Scholar 

  • Nogee LM, de Mello DE, Dehner LP, Colten HR (1993) Brief report: deficiency of pulmonary surfactant protein B in congenital alveolar proteinosis. N Engl J Med 328:406–410

    Article  CAS  PubMed  Google Scholar 

  • Olmeda B, Garcia-Alvarez B, Cruz A, Perez-Gil J (2012) Structural and functional characterization of native complexes of pulmonary surfactant proteins purified with detergents. Biophys J 102:625a–626a

    Article  Google Scholar 

  • Parra E, Moleiro LH, Lopez-Montero I, Cruz A, Monroy F, Perez-Gil J (2011) A combined action of pulmonary surfactant proteins SP-B and SP-C modulates permeability and dynamics of phospholipid membranes. Biochem J 438:555–564

    CAS  PubMed  Google Scholar 

  • Perez-Gil J (2008) Structure of pulmonary surfactant membranes and films: the role of proteins and lipid-protein interactions. Biochim Biophys Acta 1778:1676–1695

    Article  CAS  PubMed  Google Scholar 

  • Perez-Gil J, Weaver TE (2010) Pulmonary surfactant pathophysiology: current models and open questions. Physiology (Bethesda) 25:132–141

    Article  CAS  Google Scholar 

  • Perez-Gil J, Cruz A, Casals C (1993) Solubility of hydrophobic surfactant proteins in organic solvent/water mixtures. Structural studies on SP-B and SP-C in aqueous organic solvents and lipids. Biochim Biophys Acta 1168:261–270

    Article  CAS  PubMed  Google Scholar 

  • Piknova B, Schram V, Hall SB (2002) Pulmonary surfactant: phase behavior and function. Curr Opin Struct Biol 12:487–494

    Article  CAS  PubMed  Google Scholar 

  • Popovic K, Holyoake J, Pomes R, Prive GG (2012) Structure of saposin A lipoprotein discs. Proc Natl Acad Sci USA 109:2908–2912

    Article  PubMed  Google Scholar 

  • Qi X, Grabowski GA (2001) Differential membrane interactions of saposins A and C: implications for the functional specificity. J Biol Chem 276:27010–27017

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Capote K, Nag K, Schurch S, Possmayer F (2001) Surfactant protein interactions with neutral and acidic phospholipid films. Am J Physiol Lung Cell Mol Physiol 281:L231–L242

    CAS  PubMed  Google Scholar 

  • Rossmann M, Schultz-Heienbrok R, Behlke J, Remmel N, Alings C, Sandhoff K, Saenger W, Maier T (2008) Crystal structures of human saposins C andD: implications for lipid recognition and membrane interactions. Structure 16:809–817

    Article  CAS  PubMed  Google Scholar 

  • Rugonyi S, Biswas SC, Hall SB (2008) The biophysical function of pulmonary surfactant. Respir Physiol Neurobiol 163:244–255

    Article  CAS  PubMed  Google Scholar 

  • Ryan MA, Qi X, Serrano AG, Ikegami M, Perez-Gil J, Johansson J, Weaver TE (2005) Mapping and analysis of the lytic and fusogenic domains of surfactant protein B. Biochemistry 44:861–872

    Article  CAS  PubMed  Google Scholar 

  • Ryan MA, Akinbi HT, Serrano AG, Perez-Gil J, Wu H, McCormack FX, Weaver TE (2006) Antimicrobial activity of native and synthetic surfactant protein B peptides. J Immunol 176:416–425

    CAS  PubMed  Google Scholar 

  • Sarker M, Waring AJ, Walther FJ, Keough KM, Booth V (2007) Structure of mini-B, a functional fragment of surfactant protein B, in detergent micelles. Biochemistry 46:11047–11056

    Article  CAS  PubMed  Google Scholar 

  • Sarker M, Rose J, McDonald M, Morrow MR, Booth V (2011) Modifications to surfactant protein B structure and lipid interactions under respiratory distress conditions: consequences of tryptophan oxidation. Biochemistry 50:4867–4876

    Google Scholar 

  • Sawada K, Ariki S, Kojima T, Saito A, Yamazoe M, Nishitani C, Shimizu T, Takahashi M, Mitsuzawa H, Yokota S, Sawada N, Fujii N, Takahashi H, Kuroki Y (2010) Pulmonary collectins protect macrophages against pore-forming activity of Legionella pneumophila and suppress its intracellular growth. J Biol Chem 285:8434–8443

    Article  CAS  PubMed  Google Scholar 

  • Schurch D, Ospina OL, Cruz A, Perez-Gil J (2010) Combined and independent action of proteins SP-B and SP-C in the surface behavior and mechanical stability of pulmonary surfactant films. Biophys J 99:3290–3299

    Article  PubMed  CAS  Google Scholar 

  • Serrano AG, Perez-Gil J (2006) Protein-lipid interactions and surface activity in the pulmonary surfactant system. Chem Phys Lipids 141:105–118

    Article  CAS  PubMed  Google Scholar 

  • Serrano AG, Cruz A, Rodriguez-Capote K, Possmayer F, Perez-Gil J (2005) Intrinsic structural and functional determinants within the amino acid sequence of mature pulmonary surfactant protein SP-B. Biochemistry 44:417–430

    Article  CAS  PubMed  Google Scholar 

  • Serrano AG, Ryan M, Weaver TE, Perez-Gil J (2006) Critical structure-function determinants within the N-terminal region of pulmonary surfactant protein SP-B. Biophys J 90:238–249

    Article  CAS  PubMed  Google Scholar 

  • Serrano AG, Cabre EJ, Perez-Gil J (2007) Identification of a segment in the precursor of pulmonary surfactant protein SP-B, potentially involved in pH-dependent membrane assembly of the protein. Biochim Biophys Acta 1768:1059–1069

    Article  CAS  PubMed  Google Scholar 

  • Shiffer K, Hawgood S, Haagsman HP, Benson B, Clements JA, Goerke J (1993) Lung surfactant proteins, SP-B and SP-C, alter the thermodynamic properties of phospholipid membranes: a differential calorimetry study. Biochemistry 32:590–597

    Article  CAS  PubMed  Google Scholar 

  • Stokeley D, Bemporad D, Gavaghan D, Sansom MS (2007) Conformational dynamics of a lipid-interacting protein: MD simulations of saposin B. Biochemistry 46:13573–13580

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Fujita Y, Kogishi K (1989) Reconstitution of tubular myelin from synthetic lipids and proteins associated with pig pulmonary surfactant. Am Rev Respir Dis 140:75–81

    Article  CAS  PubMed  Google Scholar 

  • Tatti M, Salvioli R, Ciaffoni F, Pucci P, Andolfo A, Amoresano A, Vaccaro AM (1999) Structural and membrane-binding properties of saposin D. Eur J Biochem 263:486–494

    Article  CAS  PubMed  Google Scholar 

  • Vandenbussche G, Clercx A, Clercx M, Curstedt T, Johansson J, Jornvall H, Ruysschaert JM (1992) Secondary structure and orientation of the surfactant protein SP-B in a lipid environment. A Fourier transform infrared spectroscopy study. Biochemistry 31:9169–9176

    Article  CAS  PubMed  Google Scholar 

  • Walther FJ, Waring AJ, Sherman MA, Zasadzinski JA, Gordon LM (2007) Hydrophobic surfactant proteins and their analogues. Neonatology 91:303–310

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Rao KM, Demchuk E (2003) Topographical organization of the N-terminal segment of lung pulmonary surfactant protein B (SP-B(1–25)) in phospholipid bilayers. Biochemistry 42:4015–4027

    Article  CAS  PubMed  Google Scholar 

  • Waring AJ, Walther FJ, Gordon LM, Hernandez-Juviel JM, Hong T, Sherman MA, Alonso C, Alig T, Braun A, Bacon D, Zasadzinski JA (2005) The role of charged amphipathic helices in the structure and function of surfactant protein B. J Pept Res 66:364–374

    Article  CAS  PubMed  Google Scholar 

  • Wert SE, Whitsett JA, Nogee LM (2009) Genetic disorders of surfactant dysfunction. Pediatr Dev Pathol 12:253–274

    Article  CAS  PubMed  Google Scholar 

  • Whitelegge JP, Ahn V, Norris AJ, Sung H, Waring A, Stevens RL, Fluharty CB, Prive G, Faull KF, Fluharty AL (2003) Characterization of a recombinant molecule covalently indistinguishable from human cerebroside-sulfate activator protein (CSAct or Saposin B). Cell Mol Biol (Noisy-le-grand) 49:799–807

    CAS  Google Scholar 

  • Whitsett JA, Wert SE, Weaver TE (2009) Alveolar surfactant homeostasis and the pathogenesis of pulmonary disease. Annu Rev Med 61:105–119

    Article  CAS  Google Scholar 

  • Willson DF, Notter RH (2011) The future of exogenous surfactant therapy. Respir Care 56:1369–1386 (discussion 1386–1388)

    Article  PubMed  Google Scholar 

  • Wimley WC, White SH (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol 3:842–848

    Article  CAS  PubMed  Google Scholar 

  • Wright JR (2005) Immunoregulatory functions of surfactant proteins. Nat Rev Immunol 5:58–68

    Article  CAS  PubMed  Google Scholar 

  • Wustneck N, Wustneck R, Perez-Gil J, Pison U (2003) Effects of oligomerization and secondary structure on the surface behavior of pulmonary surfactant proteins SP-B and SP-C. Biophys J 84:1940–1949

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Johansson J, Ridsdale R, Willander H, Fitzen M, Akinbi HT, Weaver TE (2009) Surfactant protein B propeptide contains a saposin-like protein domain with antimicrobial activity at low pH. J Immunol 184(2):975–983

    Google Scholar 

  • Zaltash S, Johansson J (1998) Secondary structure and limited proteolysis give experimental evidence that the precursor of pulmonary surfactant protein B contains three saposin-like domains. FEBS Lett 423:1–4

    Article  CAS  PubMed  Google Scholar 

  • Zaltash S, Palmblad M, Curstedt T, Johansson J, Persson B (2000) Pulmonary surfactant protein B: a structural model and a functional analogue. Biochim Biophys Acta 1466:179–186

    Article  CAS  PubMed  Google Scholar 

  • Zaltash S, Griffiths WJ, Beck D, Duan CX, Weaver TE, Johansson J (2001) Membrane activity of (Cys48Ser) lung surfactant protein B increases with dimerisation. Biol Chem 382:933–939

    Article  CAS  PubMed  Google Scholar 

  • Zuo YY, Veldhuizen RA, Neumann AW, Petersen NO, Possmayer F (2008) Current perspectives in pulmonary surfactant–inhibition, enhancement and evaluation. Biochim Biophys Acta 1778:1947–1977

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research has been supported by grants from the Spanish Ministry of Economy and Competitivity (BIO2009-09694, BIO2012-30733, CSD2007-00010), and Madrid Regional Government (S2009MAT-1507). B. G.-A. is recipient of a Ramon y Cajal contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Pérez-Gil.

Additional information

Special Issue: Structure, function, folding and assembly of membrane proteins—Insight from Biophysics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olmeda, B., García-Álvarez, B. & Pérez-Gil, J. Structure–function correlations of pulmonary surfactant protein SP-B and the saposin-like family of proteins. Eur Biophys J 42, 209–222 (2013). https://doi.org/10.1007/s00249-012-0858-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-012-0858-9

Keywords

Navigation