Skip to main content
Log in

Structure-based statistical analysis of transmembrane helices

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Recent advances in determination of the high-resolution structure of membrane proteins now enable analysis of the main features of amino acids in transmembrane (TM) segments in comparison with amino acids in water-soluble helices. In this work, we conducted a large-scale analysis of the prevalent locations of amino acids by using a data set of 170 structures of integral membrane proteins obtained from the MPtopo database and 930 structures of water-soluble helical proteins obtained from the protein data bank. Large hydrophobic amino acids (Leu, Val, Ile, and Phe) plus Gly were clearly prevalent in TM helices whereas polar amino acids (Glu, Lys, Asp, Arg, and Gln) were less frequent in this type of helix. The distribution of amino acids along TM helices was also examined. As expected, hydrophobic and slightly polar amino acids are commonly found in the hydrophobic core of the membrane whereas aromatic (Trp and Tyr), Pro, and the hydrophilic amino acids (Asn, His, and Gln) occur more frequently in the interface regions. Charged amino acids are also statistically prevalent outside the hydrophobic core of the membrane, and whereas acidic amino acids are frequently found at both cytoplasmic and extra-cytoplasmic interfaces, basic amino acids cluster at the cytoplasmic interface. These results strongly support the experimentally demonstrated biased distribution of positively charged amino acids (that is, the so-called the positive-inside rule) with structural data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arkin IT, Brunger AT (1998) Statistical analysis of predicted transmembrane alpha-helices. Biochim Biophys Acta 1429:113–128

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Berman HM, Westbrook J, Westbrook J, Feng Z, Feng Z, Gilliland G, Gilliland G, Bhat TN, Bhat TN, Weissig H, Weissig H, Shindyalov IN, Shindyalov IN, Bourne PE, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  • Blaber M, Zhang XJ, Matthews BW (1993) Structural basis of amino acid alpha helix propensity. Science 260:1637–1640

    Article  PubMed  CAS  Google Scholar 

  • Bowie JU (1997) Helix packing in membrane proteins. J Mol Biol 272:780–789

    Article  PubMed  CAS  Google Scholar 

  • Bywater RP, Thomas D, Vriend G (2001) A sequence and structural study of transmembrane helices. J Comput Aided Mol Des 15:533–552

    Google Scholar 

  • Cordes FS, Bright JN, Sansom MSP (2002) Proline-induced distortions of transmembrane helices. J Mol Biol 323:951–960

    Article  PubMed  CAS  Google Scholar 

  • Eilers M, Patel AB, Liu W, Smith SO (2002) Comparison of helix interactions in membrane and soluble alpha-bundle proteins. Biophys J 82:2720–2736

    Article  PubMed  CAS  Google Scholar 

  • Engel DE, DeGrado WF (2004) Amino acid propensities are position-dependent throughout the length of alpha-helices. J Mol Biol 337:1195–1205

    Article  PubMed  CAS  Google Scholar 

  • Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H, Nilsson I, White SH, von Heijne G (2005) Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433:377–381

    Article  PubMed  CAS  Google Scholar 

  • Hessa T, Meindl-Beinker NM, Bernsel A, Kim H, Sato Y, Lerch-Bader M, Nilsson I, White SH, von Heijne G (2007) Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450:1026–1030

    Article  PubMed  CAS  Google Scholar 

  • Holt A, Killian JA (2009) Orientation and dynamics of transmembrane peptides: the power of simple models. Eur Biophys J 39:609–621

    Article  PubMed  Google Scholar 

  • Huang Y, Huang Y, Niu B, Niu B, Gao Y, Gao Y, Fu L, Fu L, Li W, Li W (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmedandid=20053844andretmode=refandcmd=prlinks

    Google Scholar 

  • Illergård K, Kauko A, Elofsson A (2011) Why are polar residues within the membrane core evolutionary conserved? Proteins 79:79–91

    Article  PubMed  Google Scholar 

  • Jayasinghe S, Hristova K, White SH (2001a) Energetics, stability, and prediction of transmembrane helices. J Mol Biol 312:927–934

    Article  PubMed  CAS  Google Scholar 

  • Jayasinghe S, Jayasinghe S, Hristova K, Hristova K, White SH, White SH (2001b) MPtopo: a database of membrane protein topology. Protein Sci 10:455–458

    Article  PubMed  CAS  Google Scholar 

  • Johansson ACV, Lindahl E (2007) Position-resolved free energy of solvation for amino acids in lipid membranes from molecular dynamics simulations. Proteins 70:1332–1344

    Article  Google Scholar 

  • Lerch-Bader M, Lundin C, Kim H, Nilsson I, von Heijne G (2008) Contribution of positively charged flanking residues to the insertion of transmembrane helices into the endoplasmic reticulum. Proc Natl Acad Sci USA 105:4127–4132

    Article  PubMed  CAS  Google Scholar 

  • Li SC, Deber CM (1994) A measure of helical propensity for amino acids in membrane environments. Nat Struct Biol 1:558

    Article  PubMed  CAS  Google Scholar 

  • Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL (2012) OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 40:370–376

    Article  Google Scholar 

  • MacCallum JL, Bennett WFD, Tieleman DP (2008) Distribution of amino acids in a lipid bilayer from computer simulations. Biophys J 94:3393–3404

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Gil L, Saurí A, Marti-Renom MA, Mingarro I (2011) Membrane protein integration into the endoplasmic reticulum. FEBS J 278:3846–3858

    Article  PubMed  Google Scholar 

  • Nilsson I, von Heijne G (1990) Fine-tuning the topology of a polytopic membrane protein: role of positively and negatively charged amino acids. Cell 62:1135–1141

    Article  PubMed  CAS  Google Scholar 

  • Nilsson I, Johnson AE, von Heijne G (2003) How hydrophobic is alanine? J Biol Chem 278:29389–29393

    Article  PubMed  CAS  Google Scholar 

  • Nilsson J, Persson B, von Heijne G (2005) Comparative analysis of amino acid distributions in integral membrane proteins from 107 genomes. Proteins 60:606–616

    Article  PubMed  CAS  Google Scholar 

  • Orzáez M, Salgado J, Giménez-Giner A, Pérez-Payá E, Mingarro I (2004) Influence of proline residues in transmembrane helix packing. J Mol Biol 335:631–640

    Article  PubMed  Google Scholar 

  • Pal L, Chakrabarti P, Basu G (2003) Sequence and structure patterns in proteins from an analysis of the shortest helices: implications for helix nucleation. J Mol Biol 326:273–291

    Article  PubMed  CAS  Google Scholar 

  • Saurí A, Tamborero S, Martínez-Gil L, Johnson AE, Mingarro I (2009) Viral membrane protein topology is dictated by multiple determinants in its sequence. J Mol Biol 387:113–128

    Article  PubMed  Google Scholar 

  • Senes A, Gerstein M, Engelman DM (2000) Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. J Mol Biol 296:921–936

    Article  PubMed  CAS  Google Scholar 

  • Sharpe HJ, Stevens TJ, Munro S (2010) A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142:158–169

    Article  PubMed  CAS  Google Scholar 

  • Ulmschneider MB, Sansom MS (2001) Amino acid distributions in integral membrane protein structures. Biochim Biophys Acta 1512:1–14

    Article  PubMed  CAS  Google Scholar 

  • Ulmschneider MB, Sansom MSP, Di Nola A (2005) Properties of integral membrane protein structures: derivation of an implicit membrane potential. Proteins 59:252–265

    Article  PubMed  CAS  Google Scholar 

  • von Heijne G (1992) Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol 225:487–494

    Article  Google Scholar 

  • Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038

    Article  PubMed  CAS  Google Scholar 

  • White SH (2004) The progress of membrane protein structure determination. Protein Sci 13:1948–1949

    Article  PubMed  CAS  Google Scholar 

  • White SH (2009) Biophysical dissection of membrane proteins. Nature 459:344–346

    Article  PubMed  CAS  Google Scholar 

  • White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28:319–365

    Article  PubMed  CAS  Google Scholar 

  • Williams RW, Chang A, Juretić D, Loughran S (1987) Secondary structure predictions and medium range interactions. Biochim Biophys Acta 916:200–204

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants BFU2009-08401 (to I.M.) and BFU2010-19310 (to M.A.M-R.) from the Spanish Ministry of Science and Innovation (MICINN, ERDF supported by the European Union), and by PROMETEO/2010/005 and ACOMP/2012/226 (to I.M.) and ACOMP/2011/048 (to M.A.M-R.) from the Generalitat Valenciana. C.B–D. was recipient of a predoctoral FPI fellowship from the MICINN.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marc A. Marti-Renom or Ismael Mingarro.

Additional information

Special issue: Structure, function, folding and assembly of membrane proteins—Insight from Biophysics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baeza-Delgado, C., Marti-Renom, M.A. & Mingarro, I. Structure-based statistical analysis of transmembrane helices. Eur Biophys J 42, 199–207 (2013). https://doi.org/10.1007/s00249-012-0813-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-012-0813-9

Keywords

Navigation