Skip to main content
Log in

Ristocetin-induced self-aggregation of von Willebrand factor

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Von Willebrand factor (VWF) is a large multimeric adhesive glycoprotein, with complex roles in thrombosis and hemostasis, present in circulating blood and in secretory granules of endothelial cells and platelets. High shear stress triggers conformational changes responsible for both binding to the platelet receptor glycoprotein GpIb and its self-association, thus supporting the formation of platelet plug under flow. Ristocetin also promotes the interaction of VWF with GpIb and is able to induce platelet aggregation, and thus is largely used to mimic this effect in vitro. In this research paper, we followed the time course of VWF self-association in solution induced by ristocetin binding by light scattering and at the same time we collected atomic force microscopy images to clarify the nature of the assembly that is formed. In fact, this process evolves initially through the formation of fibrils that subsequently interact to form supramolecular structures whose dimensions would be capable of trapping platelets even in the absence of any degree of shear stress or interaction with external surfaces. This intrinsic property, that is the ability to self-aggregate, may be involved in some pathological settings that have been revealed in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barg A, Ossig R, Goerge T, Schneider MF, Schillers H, Oberleithner H, Schneider SW (2007) Soluble plasma-derived von Willebrand factor assembles to a haemostatically active filamentous network. Thromb Haemost 97:514–526

    CAS  PubMed  Google Scholar 

  • Brunelli R, Papi M, Arcovito G, Bompiani A, Castagnola M, Parasassi T, Sampaolese B, Vincenzoni F, De Spirito M (2007) Globular structure of human ovulatory cervical mucus. FASEB J 21:3872–3876

    Article  CAS  PubMed  Google Scholar 

  • De Cristofaro R, Peyvandi F, Palla R, Lavoretano S, Lombardi R, Merati G, Romitelli F, Di Stasio E, Mannucci PM (2005) Role of chloride ions in modulation of the interaction between von Willebrand factor and ADAMTS-13. J Biol Chem 280:23295–23302

    Article  PubMed  Google Scholar 

  • De Luca M, Facey DA, Favaloro EJ, Hertzberg MS, Whisstock JC, McNally T, Andrews RK, Berndt MC (2000) Structure and function of the von Willebrand factor A1 domain: analysis with monoclonal antibodies reveals distinct binding sites involved in recognition of the platelet membrane glycoprotein Ib-IX-V complex and ristocetin-dependent activation. Blood 95:164–172

    PubMed  Google Scholar 

  • De Spirito M, Arcòvito G, Papi M, Rocco M, Ferri F (2003) Small- and wide-angle elastic light scattering study of fibrin structure. J Appl Cryst 36:636–641

    Article  Google Scholar 

  • De Spirito M, Brunelli M, Mei G, Bertani F, Ciasca G, Greco G, Papi M, Arcovito G, Ursini F, Parasassi T (2006) Low density lipoprotein aged in plasma forms clusters resembling subendothelial droplets: aggregation via surface sites. Biophys J 90:4239–4247

    Article  PubMed  Google Scholar 

  • Di Stasio E, Romitelli F, Lancellotti S, Arcovito A, Giardina B, De Cristofaro R (2009) Kinetic study of von Willebrand factor self-aggregation induced by ristocetin. Biophys Chem 144:101–107

    Article  CAS  PubMed  Google Scholar 

  • Ferri F, Greco M, Arcovito G, Bassi FA, De Spirito M, Paganini E, Rocco M (2001) Growth kinetics and structure of fibrin gels. Phys Rev E Stat Nonlin Soft Matter Phys 63:031401

    CAS  PubMed  Google Scholar 

  • Ferri F, Greco M, Arcovito G, De Spirito M, Rocco M (2002) Structure of fibrin gels studied by elastic light scattering techniques: dependence of fractal dimension, gel crossover length, fiber diameter, and fiber density on monomer concentration. Phys Rev E Stat Nonlin Soft Matter Phys 66:011913

    PubMed  Google Scholar 

  • Groot E, de Groot PG, Fijnheer R, Lenting PJ (2007) The presence of active von Willebrand factor under various pathological conditions. Curr Opin Hematol 14:284–289

    Article  CAS  PubMed  Google Scholar 

  • Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic, New York

    Google Scholar 

  • Liu Y, Eisenberg D (2002) 3D domain swapping: as domains continue to swap. Protein Sci 11:1285–1299

    Article  CAS  PubMed  Google Scholar 

  • Loscalzo J, Fisch M, Handin RI (1985) Solution studies of the quaternary structure and assembly of human von Willebrand factor. Biochemistry 24:4468–4475

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Hamako J (2005) Structure and function of snake venom toxins interacting with human von Willebrand factor. Toxicon 45:1075–1087

    Article  CAS  PubMed  Google Scholar 

  • Matsushita T, Meyer D, Sadler JE (2000) Localization of von Willebrand factor-binding sites for platelet glycoprotein Ib and botrocetin by charged-to-alanine scanning mutagenesis. J Biol Chem 275:11044–11049

    Article  CAS  PubMed  Google Scholar 

  • Maulucci G, De Spirito M, Arcovito G, Boffi F, Castellano AC, Briganti G (2005) Particle size distribution in DMPC vesicles solutions undergoing different sonication times. Biophys J 88:3545–3550

    Article  CAS  PubMed  Google Scholar 

  • Miura S, Li CQ, Cao Z, Wang H, Wardell MR, Sadler JE (2000) Interaction of von Willebrand factor domain A1 with platelet glycoprotein Ibalpha-(1–289). Slow intrinsic binding kinetics mediate rapid platelet adhesion. J Biol Chem 275:7539–7546

    Article  CAS  PubMed  Google Scholar 

  • Nieswandt B, Watson SP (2003) Platelet-collagen interaction: is GPVI the central receptor? Blood 102:449–461

    Article  CAS  PubMed  Google Scholar 

  • Papi M, Arcovito G, De Spirito M, Amiconi G, Bellelli A, Boumis G (2005) Simultaneous static and dynamic light scattering approach to the characterization of the different fibrin gel structures occurring by changing chloride concentration. Appl Phys Lett 86:183901

    Article  Google Scholar 

  • Parasassi T, De Spirito M, Mei G, Brunelli R, Greo G, Lenzi L, Maulucci G, Nicolai E, Papi M, Arcovito G, Tosatto SCE, Ursini F (2008) Low density lipoprotein misfolding and amyloidogenesis. FASEB J 22:2350–2356

    Article  CAS  PubMed  Google Scholar 

  • Raghavachari M, Tsai H, Kottke-Marchant K, Marchant RE (2000) Surface dependent structures of von Willebrand factor observed by AFM under aqueous conditions. Colloids Surf B Biointerfaces 19:315–324

    Article  CAS  PubMed  Google Scholar 

  • Ruggeri ZM, Zimmerman TS (1981) The complex multimeric composition of factor VIII/von Willebrand factor. Blood 57:1140–1143

    CAS  PubMed  Google Scholar 

  • Sadler JE (1998) Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem 67:395–424

    Article  CAS  PubMed  Google Scholar 

  • Sakariassen KS, Bolhuis PA, Sixma JJ (1979) Human blood platelet adhesion to artery subendothelium is mediated by factor VIII-von Willebrand factor bound to the subendothelium. Nature 279:636–638

    Article  CAS  PubMed  Google Scholar 

  • Savage B, Saldivar E, Ruggeri ZM (1996) Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84:289–297

    Article  CAS  PubMed  Google Scholar 

  • Savage B, Cattaneo M, Ruggeri ZM (2001) Mechanisms of platelet aggregation. Curr Opin Hematol 8:270–276

    Article  CAS  PubMed  Google Scholar 

  • Savage B, Sixma JJ, Ruggeri ZM (2002) Functional self-association of von Willebrand factor during platelet adhesion under flow. Proc Natl Acad Sci USA 99:425–430

    Article  CAS  PubMed  Google Scholar 

  • Schneider SW, Nuschele S, Wixforth A, Gorzelanny C, Alexander-Katz A, Netz RR, Schneider MF (2007) Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc Natl Acad Sci USA 104:7899–7903

    Article  CAS  PubMed  Google Scholar 

  • Shankaran H, Alexandridis P, Neelamegham S (2003) Aspects of hydrodynamic shear regulating shear-induced platelet activation and self-association of von Willebrand factor in suspension. Blood 101:2637–2645

    Article  CAS  PubMed  Google Scholar 

  • Siedlecki CA, Lestini BJ, Kottke-Marchant KK, Eppell SJ, Wilson DL, Marchant RE (1996) Shear-dependent changes in the three-dimensional structure of human von Willebrand factor. Blood 88:2939–2950

    CAS  PubMed  Google Scholar 

  • Singh I, Shankaran H, Beauharnois ME, Xiao Z, Alexandridis P, Neelamegham S (2006) Solution structure of human von Willebrand factor studied using small angle neutron scattering. J Biol Chem 281:38266–38275

    Article  CAS  PubMed  Google Scholar 

  • Slayter H, Loscalzo J, Bockenstedt P, Handin RI (1985) Native conformation of human von Willebrand protein. Analysis by electron microscopy and quasi-elastic light scattering. J Biol Chem 260:8559–8563

    CAS  PubMed  Google Scholar 

  • Steppich DM, Angerer JI, Sritharan K, Schneider SW, Thalhammer S, Wixforth A, Alexander-Katz A, Schneider MF (2008) Relaxation of ultralarge VWF bundles in a microfluidic-AFM hybrid reactor. Biochem Biophys Res Commun 369:507–512

    Article  CAS  PubMed  Google Scholar 

  • Tsai HM (1996) Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood 87:4235–4244

    CAS  PubMed  Google Scholar 

  • Tsai HM (2003) Shear stress and von Willebrand factor in health and disease. Semin Thromb Hemost 29:479–488

    Article  CAS  PubMed  Google Scholar 

  • Ulrichts H, Vanhoorelbeke K, Girma JP, Lenting PJ, Vauterin S, Deckmyn H (2005) The von Willebrand factor self-association is modulated by a multiple domain interaction. J Thromb Haemost 3:552–561

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

R.D.C. acknowledges the financial support provided by MIUR (PRIN-2007) and the generous provision of some of the reagents used in this study by Grifols Italia (Ghezzano, Pisa, Italy). M.D.S., G.A., A.A., E.D.S., and R.D.C. were also supported by the funds assigned to the research programs D.1 2006 and 2007 of the Medicine Faculty of Università Cattolica del S. Cuore, Rome, Italy. Experimental data reported in this paper were obtained at the LABCEMI (Laboratorio Centralizzato di Microscopia, Ottica ed Elettronica) of the Università Cattolica del S. Cuore Roma (Italy). (http://webprd.rm.unicatt.it/pls/unicatt_rm/consultazione.mostra_pagina?id_pagina=20215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimondo De Cristofaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papi, M., Maulucci, G., De Spirito, M. et al. Ristocetin-induced self-aggregation of von Willebrand factor. Eur Biophys J 39, 1597–1603 (2010). https://doi.org/10.1007/s00249-010-0617-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-010-0617-8

Keywords

Navigation