Skip to main content
Log in

Structural modeling of calcium binding in the selectivity filter of the L-type calcium channel

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Calcium channels play crucial physiological roles. In the absence of high-resolution structures of the channels, the mechanism of ion permeation is unknown. Here we used a method proposed in an accompanying paper (Cheng and Zhorov in Eur Biophys J, 2009) to predict possible chelation patterns of calcium ions in a structural model of the L-type calcium channel. We compared three models in which two or three calcium ions interact with the four selectivity filter glutamates and a conserved aspartate adjacent to the glutamate in repeat II. Monte Carlo energy minimizations yielded many complexes with calcium ions bound to at least two selectivity filter carboxylates. In these complexes calcium-carboxylate attractions are counterbalanced by calcium-calcium and carboxylate-carboxylate repulsions. Superposition of the complexes suggests a high degree of mobility of calcium ions and carboxylate groups of the glutamates. We used the predicted complexes to propose a permeation mechanism that involves single-file movement of calcium ions. The key feature of this mechanism is the presence of bridging glutamates that coordinate two calcium ions and enable their transitions between different chelating patterns involving four to six oxygen atoms from the channel protein. The conserved aspartate is proposed to coordinate a calcium ion incoming to the selectivity filter from the extracellular side. Glutamates in repeats III and IV, which are most distant from the repeat II aspartate, are proposed to coordinate the calcium ion that leaves the selectivity filter to the inner pore. Published experimental data and earlier proposed permeation models are discussed in view of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DEKA:

The selectivity filter ring of Asp, Glu, Lys, and Ala residues from the four P-loop repeats of Na+ channels

EEEE:

The ring of glutamates in the selectivity filter of L-type Ca2+ channel

EEEED:

Locus EEEE plus the Asp residue adjacent to the selectivity filter glutamate in repeat II

KvAP:

A bacterial voltage-gated potassium channel

MC:

Monte Carlo

MCM:

Monte Carlo minimization

LTCC:

L-type calcium channel

References

  • Babich O, Matveev V, Harris AL, Shirokov R (2007) Ca2+-dependent inactivation of CaV1.2 channels prevents Gd3+ block: does Ca2+ block the pore of inactivated channels? J Gen Physiol 129:477–483

    Article  CAS  PubMed  Google Scholar 

  • Boda D, Valisko M, Eisenberg B, Nonner W, Henderson D, Gillespie D (2006) The effect of protein dielectric coefficient on the ionic selectivity of a calcium channel. J Chem Phys 125:34901

    Article  PubMed  CAS  Google Scholar 

  • Boda D, Valisko M, Eisenberg B, Nonner W, Henderson D, Gillespie D (2007) Combined effect of pore radius and protein dielectric coefficient on the selectivity of a calcium channel. Phys Rev Lett 98:168102

    Article  PubMed  CAS  Google Scholar 

  • Boda D, Nonner W, Henderson D, Eisenberg B, Gillespie D (2008) Volume exclusion in calcium selective channels. Biophys J 94:3486–3496

    Article  CAS  PubMed  Google Scholar 

  • Brooks CL, Pettitt BM, Karplus M (1985) Structural and energetic effects of truncating long ranged interactions in ionic polar fluids. J Chem Phys 83:5897–5908

    Article  CAS  Google Scholar 

  • Bruhova I, Zhorov BS (2007) Monte Carlo-energy minimization of correolide in the Kv1.3 channel: possible role of potassium ion in ligand-receptor interactions. BMC Struct Biol 7:5

    Google Scholar 

  • Brum G, Rios E (1987) Intramembrane charge movement in frog skeletal muscle fibres. Properties of charge 2. J Physiol 387:489–517

    CAS  PubMed  Google Scholar 

  • Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International Union of Pharmacology XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425

    Article  CAS  PubMed  Google Scholar 

  • Cens T, Rousset M, Kajava A, Charnet P (2007) Molecular determinant for specific Ca/Ba selectivity profiles of low and high threshold Ca2+ channels. J Gen Physiol 130:415–425

    Article  CAS  PubMed  Google Scholar 

  • Chen XH, Bezprozvanny I, Tsien RW (1996) Molecular basis of proton block of L-type Ca2+ channels. J Gen Physiol 108:363–374

    Article  CAS  PubMed  Google Scholar 

  • Cheng RC, Zhorov BS (2009) Docking of calcium ions in proteins with flexible side chains and deformable backbones. Eur Biophys J. E-pub Nov. 25

  • Cheng RC, Tikhonov DB, Zhorov BS (2009) Structural model for phenylalkylamine binding to L-type calcium channels. J Biol Chem 284:28332–28342

    Article  CAS  PubMed  Google Scholar 

  • Corry B, Allen TW, Kuyucak S, Chung SH (2001) Mechanisms of permeation and selectivity in calcium channels. Biophys J 80:195–214

    Article  CAS  PubMed  Google Scholar 

  • Dilmac N, Hilliard N, Hockerman GH (2003) Molecular determinants of Ca2+ potentiation of diltiazem block and Ca2+-dependent inactivation in the pore region of cav1.2. Mol Pharmacol 64:491–501

    Article  CAS  PubMed  Google Scholar 

  • Dilmac N, Hilliard N, Hockerman GH (2004) Molecular determinants of frequency dependence and Ca2+ potentiation of verapamil block in the pore region of Cav1.2. Mol Pharmacol 66:1236–1247

    Article  CAS  PubMed  Google Scholar 

  • Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  CAS  PubMed  Google Scholar 

  • Dudley SC Jr, Chang N, Hall J, Lipkind G, Fozzard HA, French RJ (2000) mu-conotoxin GIIIA interactions with the voltage-gated Na(+) channel predict a clockwise arrangement of the domains. J Gen Physiol 116:679–690

    Article  CAS  PubMed  Google Scholar 

  • Ellinor PT, Yang J, Sather WA, Zhang JF, Tsien RW (1995) Ca2+ channel selectivity at a single locus for high-affinity Ca2+ interactions. Neuron 15:1121–1132

    Article  CAS  PubMed  Google Scholar 

  • Gillespie D (2008) Energetics of divalent selectivity in a calcium channel: the ryanodine receptor case study. Biophys J 94:1169–1184

    Article  CAS  PubMed  Google Scholar 

  • Gillespie D, Boda D (2008) The anomalous mole fraction effect in calcium channels: a measure of preferential selectivity. Biophys J 95:2658–2672

    Article  CAS  PubMed  Google Scholar 

  • Harding MM (2001) Geometry of metal-ligand interactions in proteins. Acta Crystallogr D Biol Crystallogr 57:401–411

    Article  CAS  PubMed  Google Scholar 

  • Harding MM (2002) Metal-ligand geometry relevant to proteins and in proteins: sodium and potassium. Acta Crystallogr D Biol Crystallogr 58:872–874

    Article  PubMed  CAS  Google Scholar 

  • Harding MM (2004) The architecture of metal coordination groups in proteins. Acta Crystallogr D Biol Crystallogr 60:849–859

    Article  PubMed  CAS  Google Scholar 

  • Harding MM (2006) Small revisions to predicted distances around metal sites in proteins. Acta Crystallogr D Biol Crystallogr 62:678–682

    Article  PubMed  CAS  Google Scholar 

  • Heinemann SH, Terlau H, Stuhmer W, Imoto K, Numa S (1992) Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356:441–443

    Article  CAS  PubMed  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland

    Google Scholar 

  • Hockerman GH, Johnson BD, Scheuer T, Catterall WA (1995) Molecular determinants of high affinity phenylalkylamine block of L-type calcium channels. J Biol Chem 270:22119–22122

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41

    Article  CAS  PubMed  Google Scholar 

  • Katz AK, Glusker JP, Beebe SA, Bock CW (1996) Calcium ion coordination: a comparison with that of beryllium, magnesium, and zinc. J Am Chem Soc 118:5752–5763

    Article  CAS  Google Scholar 

  • Kuo CC, Hess P (1993a) Characterization of the high-affinity Ca2+ binding sites in the L-type Ca2+ channel pore in rat phaeochromocytoma cells. J Physiol 466:657–682

    CAS  PubMed  Google Scholar 

  • Kuo CC, Hess P (1993b) Ion permeation through the L-type Ca2+ channel in rat phaeochromocytoma cells: two sets of ion binding sites in the pore. J Physiol 466:629–655

    CAS  PubMed  Google Scholar 

  • Lazaridis T, Karplus M (1999) Effective energy function for proteins in solution. Proteins 35:133–152

    Article  CAS  PubMed  Google Scholar 

  • Lerche C, Bruhova I, Lerche H, Steinmeyer K, Wei AD, Strutz-Seebohm N, Lang F, Busch AE, Zhorov BS, Seebohm G (2007) Chromanol 293B binding in KCNQ1 (Kv7.1) channels involves electrostatic interactions with a potassium ion in the selectivity filter. Mol Pharmacol 71:1503–1511

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Scheraga HA (1987) Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc Natl Acad Sci U S A 84:6611–6615

    Article  CAS  PubMed  Google Scholar 

  • Li RA, Ennis IL, French RJ, Dudley SC Jr, Tomaselli GF, Marban E (2001) Clockwise domain arrangement of the sodium channel revealed by (mu)-conotoxin (GIIIA) docking orientation. J Biol Chem 276:11072–11077

    Article  CAS  PubMed  Google Scholar 

  • Lipkind GM, Fozzard HA (2001) Modeling of the outer vestibule and selectivity filter of the L-type Ca2+ channel. Biochemistry 40:6786–6794

    Article  CAS  PubMed  Google Scholar 

  • Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903

    Article  CAS  PubMed  Google Scholar 

  • McCleskey EW (2000) Ion channel selectivity using an electric stew. Biophys J 79:1691–1692

    Article  CAS  PubMed  Google Scholar 

  • Nonner W, Catacuzzeno L, Eisenberg B (2000) Binding and selectivity in L-type calcium channels: a mean spherical approximation. Biophys J 79:1976–1992

    Article  CAS  PubMed  Google Scholar 

  • Parent L, Gopalakrishnan M (1995) Glutamate substitution in repeat IV alters divalent and monovalent cation permeation in the heart Ca2+ channel. Biophys J 69:1801–1813

    Article  CAS  PubMed  Google Scholar 

  • Pizarro G, Fitts R, Uribe I, Rios E (1989) The voltage sensor of excitation-contraction coupling in skeletal muscle. Ion dependence and selectivity. J Gen Physiol 94:405–428

    Article  CAS  PubMed  Google Scholar 

  • Sather WA, McCleskey EW (2003) Permeation and selectivity in calcium channels. Annu Rev Physiol 65:133–159

    Article  CAS  PubMed  Google Scholar 

  • Talavera K, Staes M, Janssens A, Klugbauer N, Droogmans G, Hofmann F, Nilus B (2001) Aspartate residues of the Glu-Glu-Asp-Asp (EEDD) pore locus control selectivity and permeation of the T-type Ca(2+) channel alpha(1G). J Biol Chem 276:45628–45635

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Mikala G, Bahinski A, Yatani A, Varadi G, Schwartz A (1993) Molecular localization of ion selectivity sites within the pore of a human L-type cardiac calcium channel. J Biol Chem 268:13026–13029

    CAS  PubMed  Google Scholar 

  • Tikhonov DB, Zhorov BS (2005) Modeling P-loops domain of sodium channel: homology with potassium channels and interaction with ligands. Biophys J 88:184–197

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov DB, Zhorov BS (2007) Sodium channels: ionic model of slow inactivation and state-dependent drug binding. Biophys J 93:1557–1570

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov DB, Zhorov BS (2008) Molecular modeling of benzothiazepine binding in the L-type calcium channel. J Biol Chem 283:17594–17604

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov DB, Zhorov BS (2009) Structural model for dihydropyridine binding to L-type calcium channels. J Biol Chem 284:19006–19017

    Article  CAS  PubMed  Google Scholar 

  • Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106:765–784

    Article  CAS  Google Scholar 

  • Weiner SJ, Kollman PA, Nguyen DT, Case DA (1986) An all atom force field for simulations of proteins and nucleic acids. J Comput Chem 7:230–252

    Article  CAS  Google Scholar 

  • Yang J, Ellinor PT, Sather WA, Zhang JF, Tsien RW (1993) Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 366:158–161

    Article  CAS  PubMed  Google Scholar 

  • Yatani A, Bahinski A, Mikala G, Yamamoto S, Schwartz A (1994) Single amino acid substitutions within the ion permeation pathway alter single-channel conductance of the human L-type cardiac Ca2+ channel. Circ Res 75:315–323

    CAS  PubMed  Google Scholar 

  • Zhorov BS, Ananthanarayanan VS (1996) Structural model of a synthetic Ca2+ channel with bound Ca2+ ions and dihydropyridine ligand. Biophys J 70:22–37

    Article  CAS  PubMed  Google Scholar 

  • Zhorov BS, Tikhonov DB (2004) Potassium, sodium, calcium and glutamate-gated channels: pore architecture and ligand action. J Neurochem 88:782–799

    Article  CAS  PubMed  Google Scholar 

  • Zhorov BS, Folkman EV, Ananthanarayanan VS (2001) Homology model of dihydropyridine receptor: implications for L-type Ca(2+) channel modulation by agonists and antagonists. Arch Biochem Biophys 393:22–41

    Article  CAS  PubMed  Google Scholar 

  • Zong S, Zhou J, Tanabe T (1994) Molecular determinants of calcium-dependent inactivation in cardiac L-type calcium channels. Biochem Biophys Res Commun 201:1117–1123

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the CIHR grant MOP-53229 to BSZ. Computations were made possible by the facilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET: http://www.sharcnet.ca).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris S. Zhorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, R.C.K., Tikhonov, D.B. & Zhorov, B.S. Structural modeling of calcium binding in the selectivity filter of the L-type calcium channel. Eur Biophys J 39, 839–853 (2010). https://doi.org/10.1007/s00249-009-0574-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0574-2

Keywords

Navigation