Skip to main content
Log in

X-ray scattering studies of model lipid membrane interacting with purothionin provide support for a previously proposed mechanism of membrane lysis

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Thionins, ubiquitous plant toxins, are believed to act by lysing the membrane of pathogenic organisms. Several competing mechanisms were proposed for the lysis of phospholipid membranes by the toxins. In order to study in more detail the proposed mechanisms and possibly resolve among the competing proposals, the interactions of purothionins with a model lipid membrane in the form of a monolayer were studied. The monolayer formed at the air-water interface was studied by synchrotron X-ray reflectivity and grazing incidents diffraction methods. The model membrane was composed of 90:10 mol% DPPC:DPPS (dipylmitoyl phosphatidylcholine:dipylmitoyl phosphatidylserine). The protein interaction with the monolayer disturbs the in-plane and out-of-plane order of phospholipids, increases the amount of the liquid phase of the monolayer, and increases the average surface area per alkyl chain. The results indicate that the protein is bound only transiently, and after ~4 h most of the properties of the monolayer are reminiscent of the pure DPPC monolayer suggesting partial withdrawal of DPPS. Obtained electron density distributions perpendicular to the membrane interface do not show any significant contribution from the adsorbed proteins, further supporting the withdrawal hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

GIXD:

Grazing incidence X-ray diffraction

XR:

X-ray reflectivity

DPPC:

Dipylmitoyl phosphatidylcholine

DPPS:

Dipylmitoyl phosphatidylserine

PT:

Purothionin

References

  • Als-Nielsen J, Jacquemain D, Kjaer K, Leveiller F, Lahav M, Leiserowitz L (1994) Principles and applications of grazing incidence X-ray and neutron scattering from ordered molecular monolayers at the air-water interface. Phys Rep 246:251–313

    Article  CAS  Google Scholar 

  • Angerhofer CK, Shier WT, Vernon LP (1990) Phospholipase activation in the cytotoxic mechanism of thionin purified from nuts of pubera. Toxicon 28:547–557

    Article  CAS  PubMed  Google Scholar 

  • Bohlmann H, Apel K (1991) Thionins. Annu Rev Plant Physiol 42:227–240

    Article  CAS  Google Scholar 

  • Broekaert WF, Cammue BPA, Debolle MFC, Thevissen K, Desamblanx GW, Osborn RW (1997) Antimicrobial peptides from plants. Crit Rev Plant Sci 16:297–323

    Article  CAS  Google Scholar 

  • Carrasco L, Vazquez D, Hernandez-Lucas C, Carbonero P, Garcia-Olmedo F (1981) Thionins: plant peptides that modify membrane permeability in cultured mammalian cells. Eur J Biochem 116:185–189

    Article  CAS  PubMed  Google Scholar 

  • Castro MS, Fontes W (2005) Plant defense and antimicrobial peptides. Prot Pept Lett 12:13–18

    CAS  Google Scholar 

  • Debreczeni JE, Girmann B, Zeeck A, Kratzner R, Sheldrick GM (2003) Structure of viscotoxin A3: disulfide location from weak SAD data. Acta Cryst D 59:2125–2132

    Article  Google Scholar 

  • Evans JE, Wang Y, Shaw KP, Vernon LP (1989) Cellular responses to Pyrularia thionin are mediated by Ca2+ influx and phospholipase A2 activation and are inhibited by thionin tyrosine iodination. Proc Nat Acad Sci USA 86:5849–5853

    Article  CAS  PubMed  Google Scholar 

  • Fracki WS, Li D, Owen N, Perry C, Naisbitt GH, Vernon LP (1992) Role of Tyr and Trp in membrane responses of Pyrularia thionin determined by optical and NMR spectra following Tyr iodination and Trp modification. Toxicon 30:1427–1440

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Olmedo F, Molina A, Alamillo JM, Rodriguez-Palenzuela P (1998) Plant defense peptides. Biopolymers 47:479–491

    Article  CAS  PubMed  Google Scholar 

  • Giudici M, Pascual R, de la Canal L, Pfuller K, Pfuller U, Villalain J (2003) Interaction of viscotoxins A3 and B with membrane model systems: implications to their mechanism of action. Biophys J 85:971–981

    Article  CAS  PubMed  Google Scholar 

  • Guinier A (1963) X-ray diffraction. Freeman, San Francisco

  • Hamley IW, Pedersen SJ (1994) Analysis of neutron and X-ray reflectivity data. I. Theory. J Appl Crystallogr 27:29–35

    Article  CAS  Google Scholar 

  • Huang W, Vernon LP, Bell JD (1994) Enhancement of adenylate cyclase activity in S49 lymphoma cell membranes by the toxin thionin from Pyrularia pubera. Toxicon 32:789–797

    Article  CAS  PubMed  Google Scholar 

  • Hughes P, Dennis E, Whitecross M, Llewellyn D, Gage P (2000) The cytotoxic plant protein, beta-purothionin, forms ion channels in lipid membranes. J Biol Chem 275:823–827

    Article  CAS  PubMed  Google Scholar 

  • Jensen TR, Balashev K, Bjørnholm T, Kjaer K (2001) Novel methods for studying lipids and lipases K and their mutual interaction at interfaces. Part II. Surface sensitive synchrotron X-ray scattering. Biochimie 83:399–408

    Article  CAS  PubMed  Google Scholar 

  • Johnson KA, Kim E, Teeter MM, Suh SW, Stec B (2005) Crystal structure of alpha-hordothionin at 1.9 Angstrom resolution. FEBS Lett 579:2301–2306

    Article  CAS  PubMed  Google Scholar 

  • Li SS, Gullbo J, Lindholm P, Larsson R, Thunberg E, Samuelsson G, Bohlin L, Claeson P (2002) Ligatoxin B, a new cytotoxic protein with a novel helix-turn-helix DNA-binding domain from the mistletoe Phoradendron liga. Biochem J 366:405–413

    CAS  PubMed  Google Scholar 

  • Llanos P, Henriquez M, Minic J, Elmorjani K, Marion D, Riquelme G, Molgo J, Benoit E (2004) Neuronal and muscular alterations caused by two wheat endosperm proteins, puroindoline-a and alpha1-purothionin, are due to ion pore formation. Eur Biophys J 33:283–287

    Article  CAS  PubMed  Google Scholar 

  • Mansour HM, Zografi G (2007) Relationships between equilibrium spreading pressure and phase equilibria of phospholipid bilayers and monolayers at the air-water interface. Langmuir 23:3809–3819

    Article  CAS  PubMed  Google Scholar 

  • Miller CE, Busath DD, Strongin B, Majewski J (2008a) Packing of ganglioside GT1b:DPPE and DPPC phospholipid mixtures at the air-liquid interface. An X-ray reflectivity and grazing incidence diffraction study. Biophys J 95:641–647

    Article  CAS  PubMed  Google Scholar 

  • Miller CE, Majewski J, Watkins EB, Kuhl TL (2008b) Part I: an X-ray scattering study of cholera toxin penetration and induced phase transformations in lipid membranes. Biophys J 95:629–640

    Article  CAS  PubMed  Google Scholar 

  • Miller CE, Majewski J, Watkins EB, Mulder DJ, Gog T, Kuhl TL (2008c) Probing the local order of single phospholipid membranes using grazing incidence X-ray diffraction. Phys Rev Lett 100:058103

    Article  CAS  PubMed  Google Scholar 

  • Neville F, Ishitsuka Y, Hodges CS, Konovalov O, Waring AJ, Lehrer R, Lee KY, Gidalevitz D (2008) Protegrin interaction with lipid monolayers: grazing incidence X-ray diffraction and X-ray reflectivity study. Soft Matter 4:1665–1674

    Article  CAS  PubMed  Google Scholar 

  • Oka T, Murata Y, Nakanishi T, Yoshizumi H, Hayashida H, Ohtsuki Y, Toyoshima K, Hakura A (1992) Similarity, in molecular structure and function, between the plant toxin purothionin and the mammalian pore-forming proteins. Mol Biol Evol 9:707–715

    CAS  PubMed  Google Scholar 

  • Rao U, Stec B, Teeter MM (1995) Refinement of purothionins reveals the solute particles important for the lattice formation and toxicity. Part 1: α1-purothionin revisited. Acta Cryst D51:904–913

    CAS  Google Scholar 

  • Richard JA, Kelly I, Marion D, Pezolet M, Auger M (2002) Interaction between beta-purothionin and dimyristoylphosphatidylglycerol: a (31)P-NMR and infrared spectroscopic study. Biophys J 83:2074–2083

    Article  CAS  PubMed  Google Scholar 

  • Richard JA, Kelly I, Marion D, Auger M, Pezolet M (2005) Structure of beta-purothionin in membranes: a two-dimensional infrared correlation spectroscopy study. Biochemistry 44:52–61

    Article  CAS  PubMed  Google Scholar 

  • Stec B (2006) Plant thionins-the structural perspective. Cell Mol Life Sci 63:1370–1385

    Article  CAS  PubMed  Google Scholar 

  • Stec B, Rao U, Teeter MM (1995) Refinement of purothionins reveals the solute particles important for the lattice formation and toxicity. Part 2: structure of β-purothionin at 1.7 Å resolution. Acta Cryst D51:914–924

    CAS  Google Scholar 

  • Stec B, Markman O, Rao U, Heffron G, Henderson S, Vernon LP, Brumfeld V, Teeter MM (2004) Proposal for molecular mechanism of thionins deduced from physico-chemical studies of plant toxins. J Pept Res 64:210–224

    Article  CAS  PubMed  Google Scholar 

  • Thevissen K, Terras FRG, Broekaert WF (1999) Permabilization of fungal membrane by plant defensins and thionins inhibits fungal growth. Appl Environ Microbiol 65:5451–5458

    CAS  PubMed  Google Scholar 

  • Vernon LP, Bell JD (1992) Membrane structure, toxins and phospholipase A2 activity. Pharmacol Ther 54:269–295

    Article  CAS  PubMed  Google Scholar 

  • Woynarowski JM, Konopa J (1980) Interaction between DNA and viscotoxins cytotoxic basic polypeptides from Viscum album. L Hoppe Seylers Z Physiol Chem 361:1535–1545

    CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Los Alamos National Laboratory under the auspices of the United States Department of Energy under DOE contract W7405-ENG-36, and by the DOE Office of Basic Energy Science. We thank Dr. Kristian Kjaer from the University of Copenhagen in Denmark who collaborated with us on the GIXD and XR measurements at HASYLAB, Hamburg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boguslaw Stec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majewski, J., Stec, B. X-ray scattering studies of model lipid membrane interacting with purothionin provide support for a previously proposed mechanism of membrane lysis. Eur Biophys J 39, 1155–1165 (2010). https://doi.org/10.1007/s00249-009-0568-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0568-0

Keywords

Navigation