Skip to main content

Advertisement

Log in

Cholesterol modulation of nicotinic acetylcholine receptor surface mobility

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Nicotinic acetylcholine receptor (AChR) function and distribution are quite sensitive to cholesterol (Chol) levels in the plasma membrane (reviewed by Barrantes in J Neurochem 103 (suppl 1):72–80, 2007). Here we combined confocal fluorescence recovery after photobleaching (FRAP) and confocal fluorescence correlation spectroscopy (FCS) to examine the mobility of the AChR and its dependence on Chol content at the cell surface of a mammalian cell line. Plasma membrane AChR exhibited limited mobility and only ~55% of the fluorescence was recovered within 10 min after photobleaching. Depletion of membrane Chol by methyl-β-cyclodextrin strongly affected the mobility of the AChR at the plasma membrane; the fraction of mobile AChR fell from 55 to 20% in Chol-depleted cells, whereas Chol enrichment by methyl-β-cyclodextrin-Chol treatment did not reduce receptor mobility at the cell surface. Actin depolymerization caused by latrunculin A partially restored receptor mobility in Chol-depleted cells. In agreement with the FRAP data, scanning FCS experiments showed that the diffusion coefficient of the AChR was about 30% lower upon Chol depletion. Taken together, these results suggest that membrane Chol modulates AChR mobility at the plasma membrane through a Chol-dependent mechanism sensitive to cortical actin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

αBTX:

αBungarotoxin

AChR:

Nicotinic acetylcholine receptor

BODIPY-FL-C5-SM:

N-(4,4-difluoro-5, 7-dimethyl-4- bora-3a, 4a-diazo-s-indacene-3-pentanoyl)sphingosyl phosphocholine

CDx:

Methyl-β-cyclodextrin

Chol:

Cholesterol

CDx–Chol:

Methyl-β-cyclodextrin–cholesterol

FCS:

Fluorescence correlation spectroscopy

FRAP:

Fluorescence recovery after photobleaching

References

  • Adkins EM, Samuvel DJ, Fog JU, Eriksen J, Jayanthi LD, Vaegter CB, Ramamoorthy S, Gether U (2007) Membrane mobility and microdomain association of the dopamine transporter studied with fluorescence correlation spectroscopy and fluorescence recovery after photobleaching. Biochemistry 46:10484–10497

    Article  CAS  PubMed  Google Scholar 

  • Axelrod D (1980) Crosslinkage and visualization of acetylcholine receptors on myotubes with biotinylated alpha-bungarotoxin and fluorescent avidin. Proc Natl Acad Sci USA 77:4823–4827

    Article  CAS  PubMed  Google Scholar 

  • Axelrod D, Ravdin P, Koppel DE, Schlessinger J, Webb WW, Elson EL, Podleski TR (1976) Lateral motion of fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers. Proc Natl Acad Sci USA 73:4594–4598

    Article  CAS  PubMed  Google Scholar 

  • Barrantes FJ (1979) Endogenous chemical receptors: some physical aspects. Annu Rev Biophys Bioeng 8:287–321

    Article  CAS  PubMed  Google Scholar 

  • Barrantes FJ (1982) Oligomeric forms of the membrane-bound acetylcholine receptor disclosed upon extraction of the Mr 43,000 nonreceptor peptide. J Cell Biol 92:60–68

    Article  CAS  PubMed  Google Scholar 

  • Barrantes FJ (1989) The lipid environment of the nicotinic acetylcholine receptor in native and reconstituted membranes. Crit Rev Biochem Mol Biol 24:437–478

    Article  CAS  PubMed  Google Scholar 

  • Barrantes FJ (1993) Structural–functional correlates of the nicotinic acetylcholine receptor and its lipid microenvironment. FASEB J 7:1460–1467

    CAS  PubMed  Google Scholar 

  • Barrantes FJ (2003) Modulation of nicotinic acetylcholine receptor function through the outer and middle rings of transmembrane domains. Curr Opin Drug Discov Dev 6:620–632

    CAS  Google Scholar 

  • Barrantes FJ (2004) Structural basis for lipid modulation of nicotinic acetylcholine receptor function. Brain Res Brain Res Rev 47:71–95

    Article  CAS  PubMed  Google Scholar 

  • Barrantes FJ (2007) Cholesterol effects on nicotinic acetylcholine receptor. J Neurochem 103(Suppl 1):72–80

    Article  CAS  PubMed  Google Scholar 

  • Bates IR, Wiseman PW, Hanrahan JW (2006) Investigating membrane protein dynamics in living cells. Biochem Cell Biol 84:825–831

    Article  CAS  PubMed  Google Scholar 

  • Bloch RJ, Velez M, Krikorian JG, Axelrod D (1989) Microfilaments and actin-associated proteins at sites of membrane-substrate attachment within acetylcholine receptor clusters. Exp Cell Res 182:583–596

    Article  CAS  PubMed  Google Scholar 

  • Borroni V, Baier CJ, Lang T, Bonini I, White MM, Garbus I, Barrantes FJ (2007) Cholesterol depletion activates rapid internalization of submicron-sized acetylcholine receptor domains at the cell membrane. Mol Membr Biol 24:1–15

    Article  CAS  PubMed  Google Scholar 

  • Bruses JL, Chauvet N, Rutishauser U (2001) Membrane lipid rafts are necessary for the maintenance of the (alpha)7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons. J Neurosci 21:504–512

    CAS  PubMed  Google Scholar 

  • Campagna JA, Fallon J (2006) Lipid rafts are involved in C95 (4, 8) agrin fragment-induced acetylcholine receptor clustering. Neuroscience 138:123–132

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Lagerholm BC, Yang B, Jacobson K (2006) Methods to measure the lateral diffusion of membrane lipids and proteins. Methods 39:147–153

    Article  PubMed  Google Scholar 

  • Christian AE, Haynes MP, Phillips MC, Rothblat GH (1997) Use of cyclodextrins for manipulating cellular cholesterol content. J Lipid Res 38:2264–2272

    CAS  PubMed  Google Scholar 

  • Corbin J, Wang HH, Blanton MP (1998) Identifying the cholesterol binding domain in the nicotinic acetylcholine receptor with [125I]azido-cholesterol. Biochim Biophys Acta 1414:65–74

    Article  CAS  PubMed  Google Scholar 

  • Coue M, Brenner SL, Spector I, Korn ED (1987) Inhibition of actin polymerization by Latrunculin A. FEBS Lett 213:316–318

    Article  CAS  PubMed  Google Scholar 

  • Crane JM, Verkman AS (2008) Long-range nonanomalous diffusion of quantum dot-labeled aquaporin-1 water channels in the cell plasma membrane. Biophys J 94:702–713

    Article  CAS  PubMed  Google Scholar 

  • Criado M, Eibl H, Barrantes FJ (1982a) Effects of lipids on acetylcholine receptor. Essential need of cholesterol for maintenance of agonist-induced state transitions in lipid vesicles. Biochemistry 21:3622–3629

    Article  CAS  PubMed  Google Scholar 

  • Criado M, Vaz WL, Barrantes FJ, Jovin TM (1982b) Translational diffusion of acetylcholine receptor (monomeric and dimeric forms) of Torpedo marmorata reconstituted into phospholipid bilayers studied by fluorescence recovery after photobleaching. Biochemistry 21:5750–5755

    Article  CAS  PubMed  Google Scholar 

  • Dai Z, Luo X, Xie H, Peng HB (2000) The actin-driven movement and formation of acetylcholine receptor clusters. J Cell Biol 150:1321–1334

    Article  CAS  PubMed  Google Scholar 

  • Edidin M (1994) Fluorescence photobleaching and recovery, FPR, in the analysis of membrane structure and dynamics. In: Damjanovich S, Edidin M, Szollosi J, Tron L (eds) Mobility and proximity in biological membranes. CRC Press, Boca Raton, pp 109–135

  • Edidin M (2003) Lipids on the frontier: a century of cell-membrane bilayers. Nat Rev Mol Cell Biol 4:414–418

    Article  CAS  PubMed  Google Scholar 

  • Ellenberg J, Siggia ED, Moreira JE, Smith CL, Presley JF, Worman HJ, Lippincott-Schwartz J (1997) Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J Cell Biol 138:1193–1206

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Har JY, Sankaran J, Hong Y, Kannan B, Wohland T (2008) Molecular diffusion measurement in lipid bilayers over wide concentration ranges: a comparative study. Chemphyschem 9:721–728

    Article  CAS  PubMed  Google Scholar 

  • Hao M, Mukherjee S, Maxfield FR (2001) Cholesterol depletion induces large scale domain segregation in living cell membranes. Proc Natl Acad Sci USA 98:13072–13077

    Article  CAS  PubMed  Google Scholar 

  • Hoch W (1999) Formation of the neuromuscular junction. Agrin and its unusual receptors. Eur J Biochem 265:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ishitsuka R, Sato SB, Kobayashi T (2005) Imaging lipid rafts. J Biochem 137:249–254

    Article  CAS  PubMed  Google Scholar 

  • Jacobson K, Mouritsen OG, Anderson RG (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14

    Article  CAS  PubMed  Google Scholar 

  • Johnson ME, Berk DA, Blankschtein D, Golan DE, Jain RK, Langer RS (1996) Lateral diffusion of small compounds in human stratum corneum and model lipid bilayer systems. Biophys J 71:2656–2668

    Article  CAS  PubMed  Google Scholar 

  • Kellner RR, Baier CJ, Willig KI, Hell SW, Barrantes FJ (2007) Nanoscale organization of nicotinic acetylcholine receptors revealed by stimulated emission depletion microscopy. Neuroscience 144:135–143

    Article  CAS  PubMed  Google Scholar 

  • Kenworthy AK, Nichols BJ, Remmert CL, Hendrix GM, Kumar M, Zimmerberg J, Lippincott-Schwartz J (2004) Dynamics of putative raft-associated proteins at the cell surface. J Cell Biol 165:735–746

    Article  CAS  PubMed  Google Scholar 

  • Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F (2001) Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha-secretase ADAM 10. Proc Natl Acad Sci USA 98:5815–5820

    Article  CAS  PubMed  Google Scholar 

  • Kumari S, Borroni V, Chaudhry A, Chanda B, Massol R, Mayor S, Barrantes FJ (2008) Nicotinic acetylcholine receptor is internalized via a Rac-dependent, dynamin-independent endocytic pathway. J Cell Biol 181:1179–1193

    Article  CAS  PubMed  Google Scholar 

  • Kummer TT, Misgeld T, Sanes JR (2006) Assembly of the postsynaptic membrane at the neuromuscular junction: paradigm lost. Curr Opin Neurobiol 16:74–82

    Article  CAS  PubMed  Google Scholar 

  • Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi H, Kasai RS, Kondo J, Fujiwara T (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34:351–378

    Article  CAS  PubMed  Google Scholar 

  • Kwik J, Boyle S, Fooksman D, Margolis L, Sheetz MP, Edidin M (2003) Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin. Proc Natl Acad Sci USA 100:13964–13969

    Article  CAS  PubMed  Google Scholar 

  • Ladha S, Mackie AR, Clark DC (1994) Cheek cell membrane fluidity measured by fluorescence recovery after photobleaching and steady-state fluorescence anisotropy. J Membr Biol 142:223–228

    CAS  PubMed  Google Scholar 

  • Leibel WS, Firestone LL, Legler DC, Braswell LM, Miller KW (1987) Two pools of cholesterol in acetylcholine receptor-rich membranes from Torpedo. Biochim Biophys Acta 897:249–260

    Article  CAS  PubMed  Google Scholar 

  • Lenne PF, Wawrezinieck L, Conchonaud F, Wurtz O, Boned A, Guo XJ, Rigneault H, He HT, Marguet D (2006) Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J 25:3245–3256

    Article  CAS  PubMed  Google Scholar 

  • Lillemeier BF, Pfeiffer JR, Surviladze Z, Wilson BS, Davis MM (2006) Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc Natl Acad Sci USA 103:18992–18997

    Article  CAS  PubMed  Google Scholar 

  • Marchand S, Devillers-Thiery A, Pons S, Changeux JP, Cartaud J (2002) Rapsyn escorts the nicotinic acetylcholine receptor along the exocytic pathway via association with lipid rafts. J Neurosci 22:8891–8901

    CAS  PubMed  Google Scholar 

  • Marsh D, Barrantes FJ (1978) Immobilized lipid in acetylcholine receptor-rich membranes from Torpedo marmorata. Proc Natl Acad Sci USA 75:4329–4333

    Article  CAS  PubMed  Google Scholar 

  • Maxfield FR (2002) Plasma membrane microdomains. Curr Opin Cell Biol 14:483–487

    Article  CAS  PubMed  Google Scholar 

  • Muller JD, Chen Y, Gratton E (2003) Fluorescence correlation spectroscopy. Methods Enzymol 361:69–92

    Article  CAS  PubMed  Google Scholar 

  • Narayanaswami V, McNamee MG (1993) Protein–lipid interactions and Torpedo californica nicotinic acetylcholine receptor function. 2. Membrane fluidity and ligand-mediated alteration in the accessibility of gamma subunit cysteine residues to cholesterol. Biochemistry 32:12420–12427

    Article  CAS  PubMed  Google Scholar 

  • Nehls S, Snapp EL, Cole NB, Zaal KJ, Kenworthy AK, Roberts TH, Ellenberg J, Presley JF, Siggia E, Lippincott-Schwartz J (2000) Dynamics and retention of misfolded proteins in native ER membranes. Nat Cell Biol 2:288–295

    Article  CAS  PubMed  Google Scholar 

  • Niggli V (2001) Structural properties of lipid-binding sites in cytoskeletal proteins. Trends Biochem Sci 26:604–611

    Article  CAS  PubMed  Google Scholar 

  • Nishimura SY, Vrljic M, Klein LO, McConnell HM, Moerner WE (2006) Cholesterol depletion induces solid-like regions in the plasma membrane. Biophys J 90:927–938

    Article  CAS  PubMed  Google Scholar 

  • Niv H, Gutman O, Kloog Y, Henis YI (2002) Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells. J Cell Biol 157:865–872

    Article  CAS  PubMed  Google Scholar 

  • O’Connell KM, Tamkun MM (2005) Targeting of voltage-gated potassium channel isoforms to distinct cell surface microdomains. J Cell Sci 118:2155–2166

    Article  PubMed  Google Scholar 

  • Oliferenko S, Paiha K, Harder T, Gerke V, Schwarzler C, Schwarz H, Beug H, Gunthert U, Huber LA (1999) Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabilization by the actin cytoskeleton. J Cell Biol 146:843–854

    Article  CAS  PubMed  Google Scholar 

  • Orr G, Hu D, Ozcelik S, Opresko LK, Wiley HS, Colson SD (2005) Cholesterol dictates the freedom of EGF receptors and HER2 in the plane of the membrane. Biophys J 89:1362–1373

    Article  CAS  PubMed  Google Scholar 

  • Pediconi MF, Gallegos CE, Los Santos EB, Barrantes FJ (2004) Metabolic cholesterol depletion hinders cell-surface trafficking of the nicotinic acetylcholine receptor. Neuroscience 128:239–249

    Article  CAS  PubMed  Google Scholar 

  • Pucadyil TJ, Chattopadhyay A (2006) Effect of cholesterol on lateral diffusion of fluorescent lipid probes in native hippocampal membranes. Chem Phys Lipids 143:11–21

    Article  CAS  PubMed  Google Scholar 

  • Pucadyil TJ, Mukherjee S, Chattopadhyay A (2007) Organization and dynamics of NBD-labeled lipids in membranes analyzed by fluorescence recovery after photobleaching. J Phys Chem B 111:1975–1983

    Article  CAS  PubMed  Google Scholar 

  • Pumplin DW (1989) Acetylcholine receptor clusters of rat myotubes have at least three domains with distinctive cytoskeletal and membranous components. J Cell Biol 109:739–753

    Article  CAS  PubMed  Google Scholar 

  • Rao M, Mayor S (2005) Use of Forster’s resonance energy transfer microscopy to study lipid rafts. Biochim Biophys Acta 1746:221–233

    Article  CAS  PubMed  Google Scholar 

  • Roccamo AM, Pediconi MF, Aztiria E, Zanello L, Wolstenholme A, Barrantes FJ (1999) Cells defective in sphingolipids biosynthesis express low amounts of muscle nicotinic acetylcholine receptor. Eur J Neurosci 11:1615–1623

    Article  CAS  PubMed  Google Scholar 

  • Ruan Q, Cheng MA, Levi M, Gratton E, Mantulin WW (2004) Spatial–temporal studies of membrane dynamics: scanning fluorescence correlation spectroscopy (SFCS). Biophys J 87:1260–1267

    Article  CAS  PubMed  Google Scholar 

  • Sato SB, Ishii K, Makino A, Iwabuchi K, Yamaji-Hasegawa A, Senoh Y, Nagaoka I, Sakuraba H, Kobayashi T (2004) Distribution and transport of cholesterol-rich membrane domains monitored by a membrane-impermeant fluorescent polyethylene glycol-derivatized cholesterol. J Biol Chem 279:23790–23796

    Article  CAS  PubMed  Google Scholar 

  • Schootemeijer A, Van Beekhuizen AE, Gorter G, Tertoolen LG, De Laat SW, Akkerman JW (1994) Rapid alterations in lateral mobility of lipids in the plasma membrane of activated human megakaryocytes. Eur J Biochem 221:353–362

    Article  CAS  PubMed  Google Scholar 

  • Shvartsman DE, Kotler M, Tall RD, Roth MG, Henis YI (2003) Differently anchored influenza hemagglutinin mutants display distinct interaction dynamics with mutual rafts. J Cell Biol 163:879–888

    Article  CAS  PubMed  Google Scholar 

  • Sieber JJ, Willig KI, Kutzner C, Gerding-Reimers C, Harke B, Donnert G, Rammner B, Eggeling C, Hell SW, Grubmuller H, Lang T (2007) Anatomy and dynamics of a supramolecular membrane protein cluster. Science 317:1072–1076

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  PubMed  Google Scholar 

  • Simons K, van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27:6197–6202

    Article  CAS  PubMed  Google Scholar 

  • Spector I, Shochet NR, Blasberger D, Kashman Y (1989) Latrunculins—novel marine macrolides that disrupt microfilament organization and affect cell growth: I. Comparison with cytochalasin D. Cell Motil Cytoskeleton 13:127–144

    Article  CAS  PubMed  Google Scholar 

  • Stetzkowski-Marden F, Gaus K, Recouvreur M, Cartaud A, Cartaud J (2006) Agrin elicits membrane lipid condensation at sites of acetylcholine receptor clusters in C2C12 myotubes. J Lipid Res 47:2121–2133

    Article  CAS  PubMed  Google Scholar 

  • Stya M, Axelrod D (1983) Mobility and detergent extractability of acetylcholine receptors on cultured rat myotubes: a correlation. J Cell Biol 97:48–51

    Article  CAS  PubMed  Google Scholar 

  • Stya M, Axelrod D (1984) Mobility of extrajunctional acetylcholine receptors on denervated adult muscle fibers. J Neurosci 4:70–74

    CAS  PubMed  Google Scholar 

  • Sun M, Northup N, Marga F, Huber T, Byfield FJ, Levitan I, Forgacs G (2007) The effect of cellular cholesterol on membrane-cytoskeleton adhesion. J Cell Sci 120:2223–2231

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Ritchie K, Kajikawa E, Fujiwara T, Kusumi A (2005) Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques. Biophys J 88:3659–3680

    Article  CAS  PubMed  Google Scholar 

  • Triller A, Choquet D (2003) Synaptic structure and diffusion dynamics of synaptic receptors. Biol Cell 95:465–476

    Article  CAS  PubMed  Google Scholar 

  • Vaz WL, Criado M, Madeira VM, Schoellmann G, Jovin TM (1982) Size dependence of the translational diffusion of large integral membrane proteins in liquid-crystalline phase lipid bilayers. A study using fluorescence recovery after photobleaching. Biochemistry 21:5608–5612

    Article  CAS  PubMed  Google Scholar 

  • Vrljic M, Nishimura SY, Moerner WE, McConnell HM (2005) Cholesterol depletion suppresses the translational diffusion of class II major histocompatibility complex proteins in the plasma membrane. Biophys J 88:334–347

    Article  CAS  PubMed  Google Scholar 

  • Willmann R, Pun S, Stallmach L, Sadasivam G, Santos AF, Caroni P, Fuhrer C (2006) Cholesterol and lipid microdomains stabilize the postsynapse at the neuromuscular junction. EMBO J 25:4050–4060

    Article  CAS  PubMed  Google Scholar 

  • Zaal KJ, Smith CL, Polishchuk RS, Altan N, Cole NB, Ellenberg J, Hirschberg K, Presley JF, Roberts TH, Siggia E, Phair RD, Lippincott-Schwartz J (1999) Golgi membranes are absorbed into and reemerge from the ER during mitosis. Cell 99:589–601

    Article  CAS  PubMed  Google Scholar 

  • Zhu D, Xiong WC, Mei L (2006) Lipid rafts serve as a signaling platform for nicotinic acetylcholine receptor clustering. J Neurosci 26:4841–4851

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks are due to Professor Toshihide Kobayashi and Dr Satoshi B. Sato, of the Lipid Biology Laboratory, RIKEN Institute of Physical and Chemical Research, Discovery Research Institute, Saitama, and Department of Biophysics, Kyoto University, Japan, for providing a sample of f-PEG-Chol, and to Dr Jorge J. Wenz and Ms Virginia Borroni for helpful discussion. Research described in this article was supported in part by PICT 01-12790 and 5-20155 from FONCYT, Ministry of Science and Technology; PIP No. 6367 from the Argentinian Scientific Research Council (CONICET); Philip Morris USA Inc., and Philip Morris International; and PGI No. 24/B135 from Universidad Nacional del Sur, Argentina, to F.J.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Barrantes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figures (PDF 416 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baier, C.J., Gallegos, C.E., Levi, V. et al. Cholesterol modulation of nicotinic acetylcholine receptor surface mobility. Eur Biophys J 39, 213–227 (2010). https://doi.org/10.1007/s00249-009-0521-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0521-2

Keywords

Navigation