Skip to main content
Log in

Ubiquitous SPRY domains and their role in the skeletal type ryanodine receptor

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We recently identified the second of three SPRY domains in the skeletal muscle ryanodine receptor type 1 (RyR1) as a potential binding partner in the RyR1 ion channel for the recombinant II–III loop of the skeletal muscle dihydropyridine receptor, for a scorpion toxin, Imperatoxin A and for an interdomain interaction within RyR1. SPRY domains are structural domains that were first described in the fungal Dictyostelium discoideum tyrosine kinase spore lysis A and all three isoforms of the mammalian ryanodine receptor (RyR). Our studies are the first to assign a function to any of the three SPRY domains in the RyR. However, in other systems SPRY domains provide binding sites for regulatory proteins or intramolecular binding sites that maintain the structural integrity of a protein. In this article, we review the general characteristics of a range of SPRY domains and discuss evidence that the SPRY2 domain in RyR1 supports interactions with binding partners that contain a structural surface of aligned basic residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altafaj X, Cheng W, Esteve E, Urbani J, Grunwald D, Sabatier JM, Coronado R, De Waard M, Ronjat M (2005) Maurocalcine and domain A of the II-III loop of the dihydropyridine receptor Cav 1.1 subunit share common binding sites on the skeletal ryanodine receptor. J Biol Chem 280:4013–4016. doi:10.1074/jbc.C400433200

    Article  PubMed  CAS  Google Scholar 

  • Aranda-Orgilles B, Aigner J, Kunath M, Lurz R, Schneider R, Schweiger S (2008a) Active transport of the ubiquitin ligase MID1 along the microtubules is regulated by protein phosphatase 2A. PLoS ONE 3:e3507. doi:10.1371/journal.pone.0003507

    Article  PubMed  CAS  Google Scholar 

  • Aranda-Orgilles B, Trockenbacher A, Winter J, Aigner J, Kohler A, Jastrzebska E, Stahl J, Muller EC, Otto A, Wanker EE, Schneider R, Schweiger S (2008b) The Opitz syndrome gene product MID1 assembles a microtubule-associated ribonucleoprotein complex. Hum Genet 123:163–176. doi:10.1007/s00439-007-0456-6

    Article  PubMed  CAS  Google Scholar 

  • Baker ML, Serysheva II, Sencer S, Wu Y, Ludtke SJ, Jiang W, Hamilton SL, Chiu W (2002) The skeletal muscle Ca2+ release channel has an oxidoreductase-like domain. Proc Natl Acad Sci USA 99:12155–12160. doi:10.1073/pnas.182058899

    Article  PubMed  CAS  Google Scholar 

  • Bakkaloglu A (2003) Familial Mediterranean fever. Pediatr Nephrol 18:853–859. doi:10.1007/s00467-003-1185-2

    Article  PubMed  Google Scholar 

  • Ben-Chetrit E, Fox RI, Tan EM (1990) Dissociation of immune responses to the SS-A (Ro) 52-kd and 60-kd polypeptides in systemic lupus erythematosus and Sjogren’s syndrome. Arthritis Rheum 33:349–355. doi:10.1002/art.1780330307

    Article  PubMed  CAS  Google Scholar 

  • Cainarca S, Messali S, Ballabio A, Meroni G (1999) Functional characterization of the Opitz syndrome gene product (midin): evidence for homodimerization and association with microtubules throughout the cell cycle. Hum Mol Genet 8:1387–1396. doi:10.1093/hmg/8.8.1387

    Article  PubMed  CAS  Google Scholar 

  • Carrera P, Johnstone O, Nakamura A, Casanova J, Jackle H, Lasko P (2000) VASA mediates translation through interaction with a Drosophila yIF2 homolog. Mol Cell 5:181–187. doi:10.1016/S1097-2765(00)80414-1

    Article  PubMed  CAS  Google Scholar 

  • Centola M, Chen X, Sood R, Deng Z, Aksentijevich I, Blake T, Ricke DO, Chen X, Wood G, Zaks N, Richards N, Krizman D, Mansfield E, Apostolou S, Liu J, Shafran N, Vedula A, Hamon M, Cercek A, Kahan T, Gumucio D, Callen DF, Richards RI, Moyzis RK, Doggett NA, Collins FS, Liu PP, Fischel-Ghodsian N, Kastner DL (1998) Construction of an approximately 700-kb transcript map around the familial Mediterranean fever locus on human chromosome 16p13.3. Genome Res 8:1172–1191

    PubMed  CAS  Google Scholar 

  • Centola M, Wood G, Frucht DM, Galon J, Aringer M, Farrell C, Kingma DW, Horwitz ME, Mansfield E, Holland SM, O’Shea JJ, Rosenberg HF, Malech HL, Kastner DL (2000) The gene for familial Mediterranean fever, MEFV, is expressed in early leukocyte development and is regulated in response to inflammatory mediators. Blood 95:3223–3231

    PubMed  CAS  Google Scholar 

  • Chae JJ, Centola M, Aksentijevich I, Dutra A, Tran M, Wood G, Nagaraju K, Kingma DW, Liu PP, Kastner DL (2000) Isolation, genomic organization, and expression analysis of the mouse and rat homologs of MEFV, the gene for familial mediterranean fever. Mamm Genome 11:428–435. doi:10.1007/s003350010082

    Article  PubMed  CAS  Google Scholar 

  • Chae JJ, Komarow HD, Cheng J, Wood G, Raben N, Liu PP, Kastner DL (2003) Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell 11:591–604. doi:10.1016/S1097-2765(03)00056-X

    Article  PubMed  CAS  Google Scholar 

  • Chae JJ, Wood G, Masters SL, Richard K, Park G, Smith BJ, Kastner DL (2006) The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1beta production. Proc Natl Acad Sci USA 103:9982–9987. doi:10.1073/pnas.0602081103

    Article  PubMed  CAS  Google Scholar 

  • Compte E, Pontarotti P, Collette Y, Lopez M, Olive D (2004) Frontline: characterization of BT3 molecules belonging to the B7 family expressed on immune cells. Eur J Immunol 34:2089–2099. doi:10.1002/eji.200425227

    Article  PubMed  CAS  Google Scholar 

  • Cox TC, Allen LR, Cox LL, Hopwood B, Goodwin B, Haan E, Suthers GK (2000) New mutations in MID1 provide support for loss of function as the cause of X-linked Opitz syndrome. Hum Mol Genet 9:2553–2562. doi:10.1093/hmg/9.17.2553

    Article  PubMed  CAS  Google Scholar 

  • Cui Y, Tae HS, Norris NC, Karunasekara Y, Pouliquin P, Board PG, Dulhunty AF, Casarotto MG (2009) A dihydropyridine receptor alpha(1s) loop region critical for skeletal muscle contraction is intrinsically unstructured and binds to a SPRY domain of the type 1 ryanodine receptor. Int J Biochem Cell Biol 41:677–686

    Article  PubMed  CAS  Google Scholar 

  • De Falco F, Cainarca S, Andolfi G, Ferrentino R, Berti C, Rodriguez Criado G, Rittinger O, Dennis N, Odent S, Rastogi A, Liebelt J, Chitayat D, Winter R, Jawanda H, Ballabio A, Franco B, Meroni G (2003) X-linked Opitz syndrome: novel mutations in the MID1 gene and redefinition of the clinical spectrum. Am J Med Genet A 120A:222–228

    Article  PubMed  Google Scholar 

  • Dulhunty AF, Laver DR, Gallant EM, Casarotto MG, Pace SM, Curtis S (1999) Activation and inhibition of skeletal RyR channels by a part of the skeletal DHPR II-III loop: effects of DHPR Ser687 and FKBP12. Biophys J 77:189–203. doi:10.1016/S0006-3495(99)76881-5

    Article  PubMed  CAS  Google Scholar 

  • Dulhunty AF, Haarmann CS, Green D, Laver DR, Board PG, Casarotto MG (2002) Interactions between dihydropyridine receptors and ryanodine receptors in striated muscle. Prog Biophys Mol Biol 79:45–75. doi:10.1016/S0079-6107(02)00013-5

    Article  PubMed  CAS  Google Scholar 

  • Dulhunty AF, Curtis SM, Watson S, Cengia L, Casarotto MG (2004) Multiple actions of imperatoxin A on ryanodine receptors: interactions with the II-III loop “A” fragment. J Biol Chem 279:11853–11862. doi:10.1074/jbc.M310466200

    Article  PubMed  CAS  Google Scholar 

  • Dulhunty AF, Karunasekara Y, Curtis SM, Harvey PJ, Board PG, Casarotto MG (2005a) The recombinant dihydropyridine receptor II-III loop and partly structured ‘C’ region peptides modify cardiac ryanodine receptor activity. Biochem J 385:803–813. doi:10.1042/BJ20041152

    Article  PubMed  CAS  Google Scholar 

  • Dulhunty AF, Karunasekara Y, Curtis SM, Harvey PJ, Board PG, Casarotto MG (2005b) Role of some unconserved residues in the “C” region of the skeletal DHPR II-III loop. Front Biosci 10:1368–1381. doi:10.2741/1626

    Article  PubMed  CAS  Google Scholar 

  • El-Hayek R, Ikemoto N (1998) Identification of the minimum essential region in the II-III loop of the dihydropyridine receptor alpha 1 subunit required for activation of skeletal muscle-type excitation-contraction coupling. Biochemistry 37:7015–7020

    Article  PubMed  CAS  Google Scholar 

  • El-Hayek R, Antoniu B, Wang J, Hamilton SL, Ikemoto N (1995) Identification of calcium release-triggering and blocking regions of the II-III loop of the skeletal muscle dihydropyridine receptor. J Biol Chem 270:22116–22118

    Article  PubMed  CAS  Google Scholar 

  • Emes RD, Goodstadt L, Winter EE, Ponting CP (2003) Comparison of the genomes of human and mouse lays the foundation of genome zoology. Hum Mol Genet 12:701–709

    Article  PubMed  CAS  Google Scholar 

  • Godbout R, Packer M, Katyal S, Bleoo S (2002) Cloning and expression analysis of the chicken DEAD box gene DDX1. Biochim Biophys Acta 1574:63–71

    PubMed  CAS  Google Scholar 

  • Grabner M, Dirksen RT, Suda N, Beam KG (1999) The II-III loop of the skeletal muscle dihydropyridine receptor is responsible for the Bi-directional coupling with the ryanodine receptor. J Biol Chem 274:21913–21919

    Article  PubMed  CAS  Google Scholar 

  • Green D, Pace S, Curtis SM, Sakowska M, Lamb GD, Dulhunty AF, Casarotto MG (2003) The three-dimensional structural surface of two beta-sheet scorpion toxins mimics that of an alpha-helical dihydropyridine receptor segment. Biochem J 370:517–527

    Article  PubMed  CAS  Google Scholar 

  • Guggenmos J, Schubart AS, Ogg S, Andersson M, Olsson T, Mather IH, Linington C (2004) Antibody cross-reactivity between myelin oligodendrocyte glycoprotein and the milk protein butyrophilin in multiple sclerosis. J Immunol 172:661–668

    PubMed  CAS  Google Scholar 

  • Gurumurthy S, Rangnekar VM (2004) Par-4 inducible apoptosis in prostate cancer cells. J Cell Biochem 91:504–512

    Article  PubMed  CAS  Google Scholar 

  • Henry J, Mather IH, McDermott MF, Pontarotti P (1998) B30.2-like domain proteins: update and new insights into a rapidly expanding family of proteins. Mol Biol Evol 15:1696–1705

    PubMed  CAS  Google Scholar 

  • Hilton DJ, Richardson RT, Alexander WS, Viney EM, Willson TA, Sprigg NS, Starr R, Nicholson SE, Metcalf D, Nicola NA (1998) Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc Natl Acad Sci USA 95:114–119

    Article  PubMed  CAS  Google Scholar 

  • Hsieh EW, Vargervik K, Slavotinek AM (2008) Clinical and molecular studies of patients with characteristics of Opitz G/BBB syndrome shows a novel MID1 mutation. Am J Med Genet A 146A:2337–2345

    Article  PubMed  CAS  Google Scholar 

  • Ishii T, Aoki N, Noda A, Adachi T, Nakamura R, Matsuda T (1995) Carboxy-terminal cytoplasmic domain of mouse butyrophilin specifically associates with a 150-kDa protein of mammary epithelial cells and milk fat globule membrane. Biochim Biophys Acta 1245:285–292

    PubMed  Google Scholar 

  • James LC, Keeble AH, Khan Z, Rhodes DA, Trowsdale J (2007) Structural basis for PRYSPRY-mediated tripartite motif (TRIM) protein function. Proc Natl Acad Sci USA 104:6200–6205

    Article  PubMed  CAS  Google Scholar 

  • Kamura T, Sato S, Haque D, Liu L, Kaelin WG Jr, Conaway RC, Conaway JW (1998) The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev 12:3872–3881

    Article  PubMed  CAS  Google Scholar 

  • Kar AK, Diaz-Griffero F, Li Y, Li X, Sodroski J (2008) Biochemical and biophysical characterization of a chimeric TRIM21-TRIM5alpha protein. J Virol 82:11669–11681

    Article  PubMed  CAS  Google Scholar 

  • Keeble AH, Khan Z, Forster A, James LC (2008) TRIM21 is an IgG receptor that is structurally, thermodynamically, and kinetically conserved. Proc Natl Acad Sci USA 105:6045–6050

    Article  PubMed  Google Scholar 

  • Kelly SM, Price NC (2000) The use of circular dichroism in the investigation of protein structure and function. Curr Protein Pept Sci 1:349–384

    Article  PubMed  CAS  Google Scholar 

  • Kile BT, Schulman BA, Alexander WS, Nicola NA, Martin HM, Hilton DJ (2002) The SOCS box: a tale of destruction and degradation. Trends Biochem Sci 27:235–241

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Nakamori M, Lueck JD, Pouliquin P, Aoike F, Fujimura H, Dirksen RT, Takahashi MP, Dulhunty AF, Sakoda S (2005) Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Hum Mol Genet 14:2189–2200

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Pace SM, Wei L, Beard NA, Dirksen RT, Dulhunty AF (2007) A variably spliced region in the type 1 ryanodine receptor may participate in an inter-domain interaction. Biochem J 401:317–324

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Lueck JD, Harvey PJ, Pace SM, Ikemoto N, Casarotto MG, Dirksen RT, Dulhunty AF (2009) Alternative splicing of RyR1 alters the efficacy of skeletal EC coupling. Cell Calcium 45:264–274

    Article  PubMed  CAS  Google Scholar 

  • Krebs DL, Hilton DJ (2000) SOCS: physiological suppressors of cytokine signaling. J Cell Sci 113(Pt 16):2813–2819

    PubMed  CAS  Google Scholar 

  • Kuang Z, Yao S, Xu Y, Lewis RS, Low A, Masters SL, Willson TA, Kolesnik TB, Nicholson SE, Garrett TJ, Norton RS (2009) SPRY Domain-containing SOCS box protein 2: crystal structure and residues critical for protein binding. J Mol Biol 386:662–674

    Article  PubMed  CAS  Google Scholar 

  • Kugler G, Weiss RG, Flucher BE, Grabner M (2004) Structural requirements of the dihydropyridine receptor alpha1S II-III loop for skeletal-type excitation-contraction coupling. J Biol Chem 279:4721–4728

    Article  PubMed  CAS  Google Scholar 

  • Leong P, MacLennan DH (1998) A 37-amino acid sequence in the skeletal muscle ryanodine receptor interacts with the cytoplasmic loop between domains II and III in the skeletal muscle dihydropyridine receptor. J Biol Chem 273:7791–7794

    Article  PubMed  CAS  Google Scholar 

  • Li X, Li Y, Stremlau M, Yuan W, Song B, Perron M, Sodroski J (2006) Functional replacement of the RING, B-box 2, and coiled-coil domains of tripartite motif 5alpha (TRIM5alpha) by heterologous TRIM domains. J Virol 80:6198–6206

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Xu L, Meissner G (1994) Activation of the skeletal muscle calcium release channel by a cytoplasmic loop of the dihydropyridine receptor. J Biol Chem 269:6511–6516

    PubMed  CAS  Google Scholar 

  • Mana P, Goodyear M, Bernard C, Tomioka R, Freire-Garabal M, Linares D (2004) Tolerance induction by molecular mimicry: prevention and suppression of experimental autoimmune encephalomyelitis with the milk protein butyrophilin. Int Immunol 16:489–499

    Article  PubMed  CAS  Google Scholar 

  • Masters SL, Palmer KR, Stevenson WS, Metcalf D, Viney EM, Sprigg NS, Alexander WS, Nicola NA, Nicholson SE (2005) Genetic deletion of murine SPRY domain-containing SOCS box protein 2 (SSB-2) results in very mild thrombocytopenia. Mol Cell Biol 25:5639–5647

    Article  PubMed  CAS  Google Scholar 

  • Masters SL, Yao S, Willson TA, Zhang JG, Palmer KR, Smith BJ, Babon JJ, Nicola NA, Norton RS, Nicholson SE (2006) The SPRY domain of SSB-2 adopts a novel fold that presents conserved Par-4-binding residues. Nat Struct Mol Biol 13:77–84

    Article  PubMed  CAS  Google Scholar 

  • Meroni G, Diez-Roux G (2005) TRIM/RBCC, a novel class of ‘single protein RING finger’ E3 ubiquitin ligases. Bioessays 27:1147–1157

    Article  PubMed  CAS  Google Scholar 

  • Mnayer L, Khuri S, Merheby HA, Meroni G, Elsas LJ (2006) A structure-function study of MID1 mutations associated with a mild Opitz phenotype. Mol Genet Metab 87:198–203

    Article  PubMed  CAS  Google Scholar 

  • Nisole S, Stoye JP, Saib A (2005) TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol 3:799–808

    Article  PubMed  CAS  Google Scholar 

  • Papin S, Cuenin S, Agostini L, Martinon F, Werner S, Beer HD, Grutter C, Grutter M, Tschopp J (2007) The SPRY domain of Pyrin, mutated in familial Mediterranean fever patients, interacts with inflammasome components and inhibits proIL-1beta processing. Cell Death Differ 14:1457–1466

    Article  PubMed  CAS  Google Scholar 

  • Perez CF, Mukherjee S, Allen PD (2003a) Amino acids 1–1,680 of ryanodine receptor type 1 hold critical determinants of skeletal type for excitation-contraction coupling. Role of divergence domain D2. J Biol Chem 278:39644–39652

    Article  PubMed  CAS  Google Scholar 

  • Perez CF, Voss A, Pessah IN, Allen PD (2003b) RyR1/RyR3 chimeras reveal that multiple domains of RyR1 are involved in skeletal-type E-C coupling. Biophys J 84:2655–2663

    Article  PubMed  CAS  Google Scholar 

  • Perron MJ, Stremlau M, Sodroski J (2006) Two surface-exposed elements of the B30.2/SPRY domain as potency determinants of N-tropic murine leukemia virus restriction by human TRIM5alpha. J Virol 80:5631–5636

    Article  PubMed  CAS  Google Scholar 

  • Ponting C, Schultz J, Bork P (1997) SPRY domains in ryanodine receptors (Ca(2 +)-release channels). Trends Biochem Sci 22:193–194

    Article  PubMed  CAS  Google Scholar 

  • Proenza C, Wilkens CM, Beam KG (2000) Excitation-contraction coupling is not affected by scrambled sequence in residues 681–690 of the dihydropyridine receptor II-III loop. J Biol Chem 275:29935–29937

    Article  PubMed  CAS  Google Scholar 

  • Protasi F, Paolini C, Nakai J, Beam KG, Franzini-Armstrong C, Allen PD (2002) Multiple regions of RyR1 mediate functional and structural interactions with alpha(1S)-dihydropyridine receptors in skeletal muscle. Biophys J 83:3230–3244

    Article  PubMed  CAS  Google Scholar 

  • Reddy BA, Etkin LD, Freemont PS (1992) A novel zinc finger coiled-coil domain in a family of nuclear proteins. Trends Biochem Sci 17:344–345

    Article  PubMed  CAS  Google Scholar 

  • Rhodes DA, de Bono B, Trowsdale J (2005) Relationship between SPRY and B30.2 protein domains. Evolution of a component of immune defence? Immunology 116:411–417

    PubMed  CAS  Google Scholar 

  • Richardson MW, Carroll RG, Stremlau M, Korokhov N, Humeau LM, Silvestri G, Sodroski J, Riley JL (2008) Mode of transmission affects the sensitivity of human immunodeficiency virus type 1 to restriction by rhesus TRIM5alpha. J Virol 82:11117–11128

    Article  PubMed  CAS  Google Scholar 

  • Samso M, Shen X, Allen PD (2006) Structural characterization of the RyR1-FKBP12 interaction. J Mol Biol 356:917–927

    Article  PubMed  CAS  Google Scholar 

  • Schweiger S, Foerster J, Lehmann T, Suckow V, Muller YA, Walter G, Davies T, Porter H, van Bokhoven H, Lunt PW, Traub P, Ropers HH (1999) The Opitz syndrome gene product, MID1, associates with microtubules. Proc Natl Acad Sci USA 96:2794–2799

    Article  PubMed  CAS  Google Scholar 

  • Shtifman A, Ward CW, Yamamoto T, Wang J, Olbinski B, Valdivia HH, Ikemoto N, Schneider MF (2002) Interdomain interactions within ryanodine receptors regulate Ca2+ spark frequency in skeletal muscle. J Gen Physiol 119:15–32

    Article  PubMed  CAS  Google Scholar 

  • Song B, Javanbakht H, Perron M, Park DH, Stremlau M, Sodroski J (2005) Retrovirus restriction by TRIM5alpha variants from Old World and New World primates. J Virol 79:3930–3937

    Article  PubMed  CAS  Google Scholar 

  • Stange M, Tripathy A, Meissner G (2001) Two domains in dihydropyridine receptor activate the skeletal muscle Ca(2+) release channel. Biophys J 81:1419–1429

    Article  PubMed  CAS  Google Scholar 

  • Stojanov S, Kastner DL (2005) Familial autoinflammatory diseases: genetics, pathogenesis and treatment. Curr Opin Rheumatol 17:586–599

    Article  PubMed  CAS  Google Scholar 

  • Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427:848–853

    Article  PubMed  CAS  Google Scholar 

  • Styhler S, Nakamura A, Lasko P (2002) VASA localization requires the SPRY-domain and SOCS-box containing protein, GUSTAVUS. Dev Cell 3:865–876

    Article  PubMed  CAS  Google Scholar 

  • Tae HS, Norris NC, Cui Y, Karunasekara Y, Board PG, Dulhunty AF, Casarotto MG (2009) Molecular recognition of the disordered dihydropyridine receptor II-III loop by a conserved SPRY domain of the type 1 ryanodine receptor. Clin Exp Pharmacol Physiol 36:346–349

    Article  PubMed  CAS  Google Scholar 

  • Tanabe T, Beam KG, Adams BA, Niidome T, Numa S (1990) Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature 346:567–569

    Article  PubMed  CAS  Google Scholar 

  • Tazi-Ahnini R, Henry J, Offer C, Bouissou-Bouchouata C, Mather IH, Pontarotti P (1997) Cloning, localization, and structure of new members of the butyrophilin gene family in the juxta-telomeric region of the major histocompatibility complex. Immunogenetics 47:55–63

    Article  PubMed  CAS  Google Scholar 

  • Trusolino L, Comoglio PM (2002) Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nat Rev Cancer 2:289–300

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Li Z, Messing EM, Wu G (2005) The SPRY domain-containing SOCS box protein 1 (SSB-1) interacts with MET and enhances the hepatocyte growth factor-induced Erk-Elk-1-serum response element pathway. J Biol Chem 280:16393–16401

    Article  PubMed  CAS  Google Scholar 

  • Wilkens CM, Kasielke N, Flucher BE, Beam KG, Grabner M (2001) Excitation-contraction coupling is unaffected by drastic alteration of the sequence surrounding residues L720–L764 of the alpha 1S II-III loop. Proc Natl Acad Sci USA 98:5892–5897

    Article  PubMed  CAS  Google Scholar 

  • Woo JS, Suh HY, Park SY, Oh BH (2006) Structural basis for protein recognition by B30.2/SPRY domains. Mol Cell 24:967–976

    Article  PubMed  CAS  Google Scholar 

  • Yao S, Liu MS, Masters SL, Zhang JG, Babon JJ, Nicola NA, Nicholson SE, Norton RS (2006) Dynamics of the SPRY domain-containing SOCS box protein 2: flexibility of key functional loops. Protein Sci 15:2761–2772

    Article  PubMed  CAS  Google Scholar 

  • Yap MW, Nisole S, Stoye JP (2005) A single amino acid change in the SPRY domain of human Trim5alpha leads to HIV-1 restriction. Curr Biol 15:73–78

    Article  PubMed  CAS  Google Scholar 

  • Yin CC, Blayney LM, Lai FA (2005) Physical coupling between ryanodine receptor-calcium release channels. J Mol Biol 349:538–546

    Article  PubMed  CAS  Google Scholar 

  • Zhai L, Dietrich A, Skurat AV, Roach PJ (2004) Structure-function analysis of GNIP, the glycogenin-interacting protein. Arch Biochem Biophys 421:236–242

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Gurrola G, Jiang MT, Walker JW, Valdivia HH (1999) Conversion of an inactive cardiac dihydropyridine receptor II-III loop segment into forms that activate skeletal ryanodine receptors. FEBS Lett 450:221–226

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Fay Dulhunty.

Additional information

“Proteins, membranes and cells: the structure–function nexus”. Contributions from the annual scientific meeting (including a special symposium in honour of Professor Alex Hope of Flinders University, South Australia) of the Australian Society for Biophysics held in Canberra, ACT, Australia, September 28–October 1, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tae, H., Casarotto, M.G. & Dulhunty, A.F. Ubiquitous SPRY domains and their role in the skeletal type ryanodine receptor. Eur Biophys J 39, 51–59 (2009). https://doi.org/10.1007/s00249-009-0455-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0455-8

Keywords

Navigation