Skip to main content
Log in

Hydrodynamic multibead modeling: problems, pitfalls, and solutions. 1. Ellipsoid models

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The shape of macromolecules can be approximated by filling models, if both hydrodynamic and scattering properties should be predicted. Modeling of complex biological macromolecules, such as oligomeric proteins, or of molecule details calls for usage of many beads to preserve the original features. However, the calculation of precise values for structural and hydrodynamic parameters has to consider many problems and pitfalls. Among these, the huge number of beads required for modeling details and the choice of appropriate volume corrections for the calculation of intrinsic viscosities are pestering problems to date. As a first step to tackle these problems, various tests with multibead models (ellipsoids of different axial ratios) were performed. The agreement of the predicted molecular properties with those derived from whole-body approaches can be used as evaluation criteria. Modification of previously available versions of García de la Torre’s program HYDRO allows hydrodynamic modeling of macromolecules composed of a maximum of about 11,000 beads. Moreover, application of our recently suggested “reduced volume correction” enables a fast and efficient anticipation of intrinsic viscosities. Correct parameter predictions were obtained for all models analyzed. The data obtained were compared to the results of calculations based on HYDRO programs available to the public. The calculations revealed some unexpected results and allowed founded conclusions of general importance for precise calculations on multibead models (e.g., the requirement of calculations in the double-precision mode).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242. doi:10.1093/nar/28.1.235

    Article  CAS  PubMed  Google Scholar 

  • Byron O (2008) Hydrodynamic modeling: the solution conformation of macromolecules and their complexes. Methods Cell Biol 84:327–373. doi:10.1016/S0091-679X(07)84012-X

    Article  CAS  PubMed  Google Scholar 

  • Carrasco B, García de la Torre J (1999) Hydrodynamic properties of rigid particles: comparison of different modeling and computational procedures. Biophys J 76:3044–3057

    Article  CAS  PubMed  Google Scholar 

  • Carrasco B, García de la Torre J, Zipper P (1999) Calculation of hydrodynamic properties of macromolecular bead models with overlapping spheres. Eur Biophys J 28:510–515. doi:10.1007/s002490050233

    Article  CAS  PubMed  Google Scholar 

  • Durchschlag H, Zipper P (1997) Prediction of hydrodynamic parameters of biopolymers from small-angle scattering data. J Appl Cryst 30:1112–1124. doi:10.1107/S0021889897003336

    Article  CAS  Google Scholar 

  • Durchschlag H, Zipper P (2005) Calculation of volume, surface, and hydration properties of biopolymers. In: Scott DJ, Harding SE, Rowe AJ (eds) Analytical ultracentrifugation: techniques and methods. Royal Society of Chemistry, Cambridge, pp 389–431

    Google Scholar 

  • Durchschlag H, Zipper P (2008) Volume, surface and hydration properties of proteins. Prog Colloid Polym Sci 134:19–29

    CAS  Google Scholar 

  • Durchschlag H, Zipper P, Krebs A (2007) A comparison of protein models obtained by small-angle X-ray scattering and crystallography. J Appl Cryst 40:1123–1134. doi:10.1107/S0021889807045219

    Article  CAS  Google Scholar 

  • García Bernal JM, García de la Torre J (1981) Transport properties of oligomeric subunit structures. Biopolymers 20:129–139. doi:10.1002/bip.1981.360200109

    Article  Google Scholar 

  • García de la Torre J, Bloomfield VA (1981) Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications. Q Rev Biophys 14:81–139

    Article  PubMed  Google Scholar 

  • García de la Torre J, Carrasco B (1998) Intrinsic viscosity and rotational diffusion of bead models for rigid macromolecules and bioparticles. Eur Biophys J 27:549–557. doi:10.1007/s002490050165

    Article  Google Scholar 

  • García de la Torre J, Navarro S, López Martínez MC, Díaz FG, López Cascales JJ (1994) HYDRO: a computer program for the prediction of hydrodynamic properties of macromolecules. Biophys J 67:530–531

    Article  PubMed  Google Scholar 

  • García de la Torre J, Huertas ML, Carrasco B (2000) Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys J 78:719–730

    Article  PubMed  Google Scholar 

  • García de la Torre J, del Rio Echenique G, Ortega A (2007) Improved calculation of rotational diffusion and intrinsic viscosity of bead models for macromolecules and nanoparticles. J Phys Chem B 111:955–961. doi:10.1021/jp0647941

    Article  PubMed  Google Scholar 

  • Glatter O (1980) Computation of distance distribution functions and scattering functions of models for small angle scattering experiments. Acta Phys Austriaca 52:243–256

    Google Scholar 

  • Glatter O, Kratky O (eds) (1982) Small angle X-ray scattering. Academic Press, London

    Google Scholar 

  • Harding SE, Horton JC, Cölfen H (1997) The ELLIPS suite of macromolecular conformation algorithms. Eur Biophys J 25:347–359. doi:10.1007/s002490050048

    Article  CAS  PubMed  Google Scholar 

  • Sayle RA, Milner-White EJ (1995) RASMOL: biomolecular graphics for all. Trends Biochem Sci 20:374–376. doi:10.1016/S0968-0004(00)89080-5

    Article  CAS  PubMed  Google Scholar 

  • Wilson RW, Bloomfield VA (1979) Hydrodynamic properties of macromolecular complexes. V. Improved calculation of rotational diffusion coefficient and intrinsic viscosity. Biopolymers 18:1205–1211. doi:10.1002/bip.1979.360180513

    Article  CAS  Google Scholar 

  • Zipper P, Durchschlag H (1997) Calculation of hydrodynamic parameters of proteins from crystallographic data using multibody approaches. Prog Colloid Polym Sci 107:58–71. doi:10.1007/BFb0118015

    Article  CAS  Google Scholar 

  • Zipper P, Durchschlag H (1999) Prediction of hydrodynamic parameters from 3D structures. Prog Colloid Polym Sci 113:106–113. doi:10.1007/3-540-48703-4_15

    Article  CAS  Google Scholar 

  • Zipper P, Durchschlag H (2007) Modeling complex biological macromolecules: reduction of multibead models. J Biol Phys 33:523–539. doi:10.1007/s10867-008-9063-6

    Article  CAS  PubMed  Google Scholar 

  • Zipper P, Durchschlag H, Krebs A (2005) Modelling of biopolymers. In: Scott DJ, Harding SE, Rowe AJ (eds) Analytical ultracentrifugation: techniques and methods. Royal Society of Chemistry, Cambridge, pp 320–371

    Google Scholar 

Download references

Acknowledgments

The authors are much obliged to J. García de la Torre for use of various versions of HYDRO, to R. A. Sayle for RASMOL, and to Lahey Computer Systems for trial versions of the LF95 compiler.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Durchschlag.

Additional information

AUC&HYDRO 2008—Contributions from 17th International Symposium on Analytical Ultracentrifugation and Hydrodynamics, Newcastle, UK, 11–12 September 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zipper, P., Durchschlag, H. Hydrodynamic multibead modeling: problems, pitfalls, and solutions. 1. Ellipsoid models. Eur Biophys J 39, 437–447 (2010). https://doi.org/10.1007/s00249-009-0424-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0424-2

Keywords

Navigation