Skip to main content
Log in

Integrity of H1 helix in prion protein revealed by molecular dynamic simulations to be especially vulnerable to changes in the relative orientation of H1 and its S1 flank

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

In the template-assistance model, normal prion protein (PrPC), the pathogenic cause of prion diseases such as Creutzfeldt-Jakob in human, bovine spongiform encephalopathy in cow, and scrapie in sheep, converts to infectious prion (PrPSc) through an autocatalytic process triggered by a transient interaction between PrPC and PrPSc. Conventional studies suggest the S1-H1-S2 region in PrPC to be the template of S1-S2 β-sheet in PrPSc, and the conformational conversion of PrPC into PrPSc may involve an unfolding of H1 in PrPC and its refolding into the β-sheet in PrPSc. Here we conduct a series of simulation experiments to test the idea of transient interaction of the template-assistance model. We find that the integrity of H1 in PrPC is vulnerable to a transient interaction that alters the native dihedral angles at residue Asn143, which connects the S1 flank to H1, but not to interactions that alter the internal structure of the S1 flank, nor to those that alter the relative orientation between H1 and the S2 flank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aguzzi A, Sigurdson C, Heikenwaelder M (2008a) Molecular mechanisms of prion pathogenesis. Annu Rev Pathol 3:11–40

    Article  PubMed  CAS  Google Scholar 

  • Aguzzi A, Baumann F, Bremer J (2008b) The prion’s elusive reason for being. Annu Rev Neurosci 31:439–477

    Article  PubMed  CAS  Google Scholar 

  • Barducci A, Chelli R, Procacci P, Schettino V, Gervasio FL, Parrinello M (2006) Metadynamics simulation of prion protein: β-structure stability and the early stages of misfolding. J Am Chem Soc 128:2705–2710

    Article  PubMed  CAS  Google Scholar 

  • Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  • Calzolai L, Zahn R (2003) Influence of pH on NMR structure and stability of the human prion protein blobular domain. J Biol Chem 278:35592–35596

    Article  PubMed  CAS  Google Scholar 

  • Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling S, Wang B, Woods R (2005) The AMBER biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  PubMed  CAS  Google Scholar 

  • Castilla J, Saá P, Hetz C, Soto C (2006) In vitro generation of infectious scrapie prions. Cell 121:195–206

    Article  Google Scholar 

  • DeLano WL (2002) PyMOL molecular graphics system. DeLano Scientific, San Carlos. http://www.pymol.org

  • DeMarco ML, Daggett V (2004) From conversion to aggregation: protofibril formation of the prion protein. Proc Natl Acad Sci USA 101:2293–2298

    Article  PubMed  CAS  Google Scholar 

  • DeMarco ML, Daggett V (2007) Molecular mechanism for low pH triggered misfolding of the human prion protein. Biochem 46:3045–3054

    Article  CAS  Google Scholar 

  • Derreumaux P (2001) Evidence that the 127–164 region of prion proteins has two equi-energetics conformations with β or α features. Biophys J 81:1657–1665

    Article  PubMed  CAS  Google Scholar 

  • Dima RI, Thirumalai D (2004) Probing the instabilities in the dynamics of helical fragments from mouse PrPC. Proc Natl Acad Sci USA 101:15335–15340

    Article  PubMed  CAS  Google Scholar 

  • Eghiaian F, Grosclaude J, Lesceu S, Debey P, Doublet B, Treguer E, Rezaei H, Knossow M (2004) Insight into the PrPC→PrPSc conversion from the structures of antibody-bound ovine prion scrapie-susceptibility variants. Proc Natl Acad Sci USA 101:10254–10259

    Article  PubMed  CAS  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  • Guilbert C, Ricard F, Smith JC (2000) Dynamic simulation of the mouse prion protein. Biopolymers 54:406–415

    Article  PubMed  CAS  Google Scholar 

  • Harris DA (1999) Cellular biology of prion diseases. Clin Microbiol Rev 12:429–444

    PubMed  CAS  Google Scholar 

  • Horiuchi M, Caughey B (1999) Prion protein interconversions and the transmissible spongiform encephalopathies. Struct Fold Des 7:R231–R240

    Article  CAS  Google Scholar 

  • Jackson GS, Clarke AR (2000) Mammalian prion proteins. Curr Opin Struct Biol 10:69–74

    Article  PubMed  CAS  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen bond and geometrical features. Biopolymers 22:2577–2637

    Article  PubMed  CAS  Google Scholar 

  • Kozin SA, Bertho G, Mazur AK, Rabesona H, Girault JP, Haertie T, Takahashi M, Debey P, Hoa GHB (2001) Sheep prion protein synthetic peptide spanning helix 1 and β- strand 2 (Residue 142–166) shows β-hairpin structure in solution. J Biol Chem 49:46364–46370

    Article  Google Scholar 

  • Levy Y, Becker OM (2002) Conformational polymorphism of wild-type and mutant prion proteins: energy landscape analysis. Proteins 47:458–468

    Article  PubMed  CAS  Google Scholar 

  • Levy Y, Hanan E, Solomon B, Becker OM (2001) Helix-coil transition of PrP106-126: molecular dynamic study. Proteins 45:382–396

    Article  PubMed  CAS  Google Scholar 

  • Lindahl E, Hess B, van der Spoel D (2001) Gromacs 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    CAS  Google Scholar 

  • Malolepsza E, Boniecki M, Kolinski A, Piela L (2005) Theoretical model of prion propagation: a misfolded protein induces misfolding. Proc Natl Acad Sci USA 102:7835–7840

    Article  PubMed  CAS  Google Scholar 

  • Megy S, Bertho G, Kozin SA, Deby P, Hoa GHB, Girault J-O (2004) Possible role of region 152–156 in the structural duality of a peptide fragment sheep prion protein. Protein Sci 13:3151–3160

    Article  PubMed  CAS  Google Scholar 

  • Morrissey MP, Shakhnovich EI (1999) Evidence for the role of PrPC helix 1 in the hydrophilic seeding of prion aggregates. Proc Natl Acad Sci USA 96:11293–11298

    Article  PubMed  CAS  Google Scholar 

  • Muramoto T, Scott M, Cohen FE, Prusiner SB (1996) Recombinant scrapie-like prion protein of 106 amino acids. Proc Natl Acad Sci USA 93:15457–15462

    Article  PubMed  CAS  Google Scholar 

  • Onufriev A, Bashford D, Case DA (2000) Modification of the generalized Born model suitable for macromolecules. J Phys Chem B 104:3712–3720

    Article  CAS  Google Scholar 

  • Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE (1993) Conversion of α-helices into β-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA 90:10962–10966

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383

    Article  PubMed  CAS  Google Scholar 

  • Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wuthrich K (1996) NMR structure of the mouse prion protein domain PrP. Nature 382:180–182

    Article  PubMed  CAS  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1997) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  Google Scholar 

  • Santini S, Derreumaux P (2004) Helix H1 of the prion protein is rather stable against enviormental perturbations: molecular dynamics of mutation and deletion variants of PrP (90–231). Cell Mol Life Sci 61:951–960

    Article  PubMed  CAS  Google Scholar 

  • Santini S, Calude J-B, Audic S, Derreumaux P (2003) Impact of tail and mutations G131V and M129V on prion protein flexibility. Proteins 51:258–265

    Article  PubMed  CAS  Google Scholar 

  • Sharman GJ, Kenward N, Williams HE, Landon M, Mayer RJ, Searle MS (1998) Prion protein fragments spanning helix 1 and both strands of β-sheet (residues 125–170) show evidence for predominantly helical propensity by CD and NMR. Fold Des 3:313–320

    Article  PubMed  CAS  Google Scholar 

  • Tompa P, Tusnady GE, Simon I (2002) The role of dimerization in prion replication. Biophys J 82:1711–1718

    Article  PubMed  CAS  Google Scholar 

  • Watzlawik J, Sokra L, Frense D, Griesinger C, Zweckstetter M, Schulz-Schaeffer WJ, Kramer ML (2006) Prion protein helix 1 promotes aggregation but is not converted into β-sheet. J Biol Chem 281:30242–30250

    Article  PubMed  CAS  Google Scholar 

  • van der Spoel D, Lindahl E, Hess B, van Buuren AR, Apol E, Meulenhoff PJ, Tieleman DP, Sijbers ALTM, Feenstra KA, van Drunen R, Berendsen HJC (2004) Gromacs user manual version 3.2. http://www.gromacs.org

  • Ziegler J, Sticht H, Marx UC, Muller W, Rosch P, Schwarzinger S (2003) CD and NMR studies of prion protein (PrP) Helix 1. J Biol Chem 278:50175–50181

    Article  PubMed  CAS  Google Scholar 

  • Zou WQ, Cashman NR (2002) Acidic pH and detergents enhance in vitro conversion of human brain PrPC to PrPSc-like form. J Biol Chem 277:43492–43947

    Google Scholar 

Download references

Acknowledgments

This work is partially supported by grants 93-2811-B-008-001 and 94-2112-M-008-013 from the National Science Council, Taiwan, ROC. We are grateful to the National Center for High-performance Computing for computer time and facilities. CYT appreciates technical help from HT Chen on the extraction of simulation data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Yuan Tseng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseng, CY., Yu, CP. & Lee, H.C. Integrity of H1 helix in prion protein revealed by molecular dynamic simulations to be especially vulnerable to changes in the relative orientation of H1 and its S1 flank. Eur Biophys J 38, 601–611 (2009). https://doi.org/10.1007/s00249-009-0414-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0414-4

Keywords

Navigation