Skip to main content

Advertisement

Log in

Trace metals in the brain: allosteric modulators of ligand-gated receptor channels, the case of ATP-gated P2X receptors

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Zinc and copper are indispensable trace metals for life with a recognized role as catalysts in enzyme actions. We now review evidence supporting the role of trace metals as novel allosteric modulators of ionotropic receptors: a new and fundamental physiological role for zinc and copper in neuronal and brain excitability. The review is focussed on ionotropic receptor channels including nucleotide receptors, in particular the P2X receptor family. Since zinc and copper are stored within synaptic vesicles in selected brain regions, and released to the synaptic cleft upon electrical nerve ending depolarization, it is plausible that zinc and copper reach concentrations in the synapse that profoundly affect ligand-gated ionic channels, including the ATP-gated currents of P2X receptors. The identification of key P2X receptor amino acids that act as ligands for trace metal coordination, carves the structural determinants underlying the allosteric nature of the trace metal modulation. The recognition that the identified key residues such as histidines, aspartic and glutamic acids or cysteines in the extracellular domain are different for each P2X receptor subtype and may be different for each metal, highlights the notion that each P2X receptor subtype evolved independent strategies for metal coordination, which form upon the proper three-dimensional folding of the receptor channels. The understanding of the molecular mechanism of allosteric modulation of ligand-operated ionic channels by trace metals is a new contribution to metallo-neurobiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbracchio MP, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Miras-Portugal MT, King BF, Gachet C, Jacobson KA, Weisman GA, Burnstock G (2003) Characterization of the UDP-glucose receptor (re-named here the P2Y14 receptor) adds diversity to the P2Y receptor family. Trends Pharmacol Sci 24:52–55

    Article  Google Scholar 

  • Acuña-Castillo C, Morales B, Huidobro-Toro JP (2000) Zinc and copper modulate differentially the P2X4 receptor. J Neurochem 74:1529–1537

    Article  Google Scholar 

  • Acuña-Castillo C, Coddou C, Bull P, Brito J, Huidobro-Toro JP (2007) Differential role of extracellular histidines in copper, zinc, magnesium and proton modulation of the P2X7 purinergic receptor. J Neurochem 101:17–26

    Article  Google Scholar 

  • Ali FE, Barnham KJ, Barrow CJ, Separovic F (2003) Copper catalysed oxidation of amino acids and Alzheimer’s disease. Lett Peptide Sci 10:405–407

    Article  Google Scholar 

  • Aniksztejn L, Charton G, Ben-Ari Y (1987) Selective release of endogenous zinc from the hippocampal mossy fibers in situ. Brain Res 404:58–64

    Article  Google Scholar 

  • Assaf SY, Chung SH (1984) Release of endogenous Zn2+ from brain tissue during activity. Nature 308:734–736

    Article  ADS  Google Scholar 

  • Barañano DE, Ferris CD, Snyder SH (2001) Atypical neural messengers. Trends Neurosci 24:99–106

    Article  Google Scholar 

  • Beaulieu C, Dyck R, Cynader M (1992) Enrichment of glutamate in zinc-containing terminals of the cat visual cortex. Neuroreport 3:861–864

    Article  Google Scholar 

  • Birinyi A, Parker D, Antal M, Shupliakov O (2001) Zinc co-localizes with GABA and glycine in synapses in the lamprey spinal cord. J Comp Neurol 433:208–221

    Article  Google Scholar 

  • Bloomenthal AB, Goldwater E, Pritchett DB, Harrison NL (1994) Biphasic modulation of the strychnine-sensitive glycine receptor by Zn2+. Mol Pharmacol 46:1156–1159

    Google Scholar 

  • Boehning D, Snyder SH (2003) Novel neural modulators. Annu Rev Neurosci 26:105–131

    Article  Google Scholar 

  • Burnstock G (2006) Historical review: ATP as a neurotransmitter. Trends Pharmacol Sci 27:166–176

    Article  Google Scholar 

  • Clyne JD, LaPointe LD, Hume RI (2002) The role of histidine residues in modulation of the rat P2X(2) purinoceptor by zinc and pH. J Physiol 539:347–359

    Article  Google Scholar 

  • Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y, Novakovic S, Malmberg AB, Cain G, Berson A, Kassotakis L, Hedley L, Lachnit WG, Burnstock G, McMahon SB, Ford AP (2000) Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407:1011–1015

    Article  ADS  Google Scholar 

  • Cockayne DA, Dunn PM, Zhong Y, Rong W, Hamilton SG, Knight GE, Ruan HZ, Ma B, Yip P, Nunn P, McMahon SB, Burnstock G, Ford AP (2005) P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP. J Physiol 567:621–639

    Article  Google Scholar 

  • Coddou C, Villalobos C, Gonzalez J, Acuña-Castillo C, Loeb B, Huidobro-Toro JP (2002) Formation of carnosine-Cu(II) complexes prevents and reverts the inhibitory action of copper in P2X4 and P2X7 receptors. J Neurochem 80:626–633

    Article  Google Scholar 

  • Coddou C, Morales B, Gonzalez J, Grauso M, Gordillo F, Bull P, Rassendren F, Huidobro-Toro JP (2003) Histidine 140 plays a key role in the inhibitory modulation of the P2X4 nucleotide receptor by copper but not zinc. J Biol Chem 278:36777–36785

    Article  Google Scholar 

  • Coddou C, Lorca RA, Acuña-Castillo C, Grauso M, Rassendren F, Huidobro-Toro JP (2005) Heavy metals modulate the activity of the purinergic P2X4 receptor. Toxicol Appl Pharmacol 202:121–131

    Article  Google Scholar 

  • Collis MG, Hourani SM (1993) Adenosine receptor subtypes. Trends Pharmacol Sci 14:360–366

    Article  Google Scholar 

  • Cousins RJ (1983) Metallothionein-aspects related to copper and zinc metabolism. J Inherit Metab Dis 6(Suppl 1):15–21

    Article  Google Scholar 

  • Culotta VC, Klomp LW, Strain J, Casareno RL, Krems B, Gitlin JD (1997) The copper chaperone for superoxide dismutase. J Biol Chem 272:23469–23472

    Article  Google Scholar 

  • Chambers JK, Macdonald LE, Sarau HM, Ames RS, Freeman K, Foley JJ, Zhu Y, McLaughlin MM, Murdock P, McMillan L, Trill J, Swift A, Aiyar N, Taylor P, Vawter L, Naheed S, Szekeres P, Hervieu G, Scott C, Watson JM, Murphy AJ, Duzic E, Klein C, Bergsma DJ, Wilson S, Livi GP (2000) A G protein-coupled receptor for UDP-glucose. J Biol Chem 275:10767–10771

    Article  Google Scholar 

  • Cho Y, Gorina S, Jeffrey PD, Pavletich NP (1994) Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:346–355

    Article  ADS  Google Scholar 

  • Choi DW, Koh JY (1998) Zinc and brain injury. Annu Rev Neurosci 21:347–375

    Article  Google Scholar 

  • Dancis A, Yuan DS, Haile D, Askwith C, Eide D, Moehle C, Kaplan J, Klausner RD (1994) Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell 76:393–402

    Article  Google Scholar 

  • Dawson TM, Snyder SH (1994) Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci 14:5147–5159

    Google Scholar 

  • Ding S, Sachs F (2002) Evidence for non-independent gating of P2X2 receptors expressed in Xenopus oocytes. BMC Neurosci 3:17

    Article  Google Scholar 

  • Doreulee N, Yanovsky Y, Haas HL (1997) Suppression of long-term potentiation in hippocampal slices by copper. Hippocampus 7:666–669

    Article  Google Scholar 

  • Frederickson CJ (1989) Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol 31:145–238

    Article  Google Scholar 

  • Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thompson RB (2000) Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr 130:1471S–1483S

    Google Scholar 

  • Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462

    Article  Google Scholar 

  • Freemont PS (1993) The RING finger. A novel protein sequence motif related to the zinc finger. Ann N Y Acad Sci 684:174–192

    Article  ADS  Google Scholar 

  • Glerum DM, Shtanko A, Tzagoloff A (1996) Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J Biol Chem 271:14504–14509

    Article  Google Scholar 

  • Goldschmith A, Infante C, Leiva J, Motles E, Palestini M (2005) Interference of chronically ingested copper in long-term potentiation (LTP) of rat hippocampus. Brain Res 1056:176–182

    Article  Google Scholar 

  • Gordon SE, Zagotta WN (1995) Subunit interactions in coordination of Ni2+ in cyclic nucleotide-gated channels. Proc Natl Acad Sci USA 92:10222–10226

    Article  ADS  Google Scholar 

  • Harvey RJ, Thomas P, James CH, Wilderspin A, Smart TG (1999) Identification of an inhibitory Zn2+ binding site on the human glycine receptor alpha1 subunit. J Physiol 520(Pt 1):53–64

    Article  Google Scholar 

  • Hellman NE, Gitlin JD (2002) Ceruloplasmin metabolism and function. Annu Rev Nutr 22:439–458

    Article  Google Scholar 

  • Howell GA, Welch MG, Frederickson CJ (1984) Stimulation-induced uptake and release of zinc in hippocampal slices. Nature 308:736–738

    Article  ADS  Google Scholar 

  • Hsiao B, Dweck D, Luetje CW (2001) Subunit-dependent modulation of neuronal nicotinic receptors by zinc. J Neurosci 21:1848–1856

    Google Scholar 

  • Huidobro-Toro JP, Acuña C (1998) Copper inhibits the brain P2X4 ATP receptor and the 5-HT2 receptor responses expressed in Xenopus laevis oocytes. Naunyn Schmiedebergs Arch Pharmacol 358(S1):377

    Google Scholar 

  • Jornvall H (1994) The alcohol dehydrogenase system. EXS 71:221–229

    Google Scholar 

  • Kardos J, Kovacs I, Hajos F, Kalman M, Simonyi M (1989) Nerve endings from rat brain tissue release copper upon depolarization. A possible role in regulating neuronal excitability. Neurosci Lett 103:139–144

    Article  Google Scholar 

  • Kay AR (2006) Imaging synaptic zinc: promises and perils. Trends Neurosci 29:200–206

    Article  Google Scholar 

  • Kay AR, Toth K (2006) Influence of location of a fluorescent zinc probe in brain slices on its response to synaptic activation. J Neurophysiol 95:1949–1956

    Article  Google Scholar 

  • Kozma M, Szerdahelyi P, Kasa P (1981) Histochemical detection of zinc and copper in various neurons of the central nervous system. Acta Histochem 69:12–17

    Google Scholar 

  • Laube B, Kuhse J, Betz H (2000) Kinetic and mutational analysis of Zn2+ modulation of recombinant human inhibitory glycine receptors. J Physiol 522(Pt 2):215–230

    Article  Google Scholar 

  • Legendre P, Westbrook GL (1990) The inhibition of single N-methyl-d-aspartate-activated channels by zinc ions on cultured rat neurones. J Physiol 429:429–449

    Google Scholar 

  • Lin SJ, Pufahl RA, Dancis A, O’Halloran TV, Culotta VC (1997) A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem 272:9215–9220

    Article  Google Scholar 

  • Lorca RA, Coddou C, Gazitua MC, Bull P, Arredondo C, Huidobro-Toro JP (2005) Extracellular histidine residues identify common structural determinants in the copper/zinc P2X2 receptor modulation. J Neurochem 95:499–512

    Article  Google Scholar 

  • Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY (2007) Function and regulation of human copper-transporting ATPases. Physiol Rev 87:1011–1046

    Article  Google Scholar 

  • Mathie A, Sutton GL, Clarke CE, Veale EL (2006) Zinc and copper: pharmacological probes and endogenous modulators of neuronal excitability. Pharmacol Ther 111:567–583

    Article  Google Scholar 

  • Miller J, McLachlan AD, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. Embo J 4:1609–1614

    Google Scholar 

  • Mulryan K, Gitterman DP, Lewis CJ, Vial C, Leckie BJ, Cobb AL, Brown JE, Conley EC, Buell G, Pritchard CA, Evans RJ (2000) Reduced vas deferens contraction and male infertility in mice lacking P2X1 receptors. Nature 403:86–89

    Article  ADS  Google Scholar 

  • Nagaya N, Tittle RK, Saar N, Dellal SS, Hume RI (2005) An intersubunit zinc binding site in rat P2X2 receptors. J Biol Chem 280:25982–25993

    Article  Google Scholar 

  • Nelson DL, Cox MM (2005) Lehninger principles of biochemistry, 4th edn. Freeman HW & Co, New York

    Google Scholar 

  • North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    Google Scholar 

  • Ono S, Cherian MG (1999) Regional distribution of metallothionein, zinc, and copper in the brain of different strains of rats. Biol Trace Elem Res 69:151–159

    Article  Google Scholar 

  • Palma E, Maggi L, Miledi R, Eusebi F (1998) Effects of Zn2+ on wild and mutant neuronal alpha7 nicotinic receptors. Proc Natl Acad Sci USA 95:10246–10250

    Article  ADS  Google Scholar 

  • Palmiter RD, Huang L (2004) Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflugers Arch 447:744–751

    Article  Google Scholar 

  • Paoletti P, Ascher P, Neyton J (1997) High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J Neurosci 17:5711–5725

    Google Scholar 

  • Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284:805–808

    Article  ADS  Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    Google Scholar 

  • Rassendren FA, Lory P, Pin JP, Nargeot J (1990) Zinc has opposite effects on NMDA and non-NMDA receptors expressed in Xenopus oocytes. Neuron 4:733–740

    Article  Google Scholar 

  • Richardson J, Thomas KA, Rubin BH, Richardson DC (1975) Crystal structure of bovine Cu,Zn superoxide dismutase at 3 A resolution: chain tracing and metal ligands. Proc Natl Acad Sci USA 72:1349–1353

    Article  ADS  Google Scholar 

  • Rosati AM, Traversa U (1999) Mechanisms of inhibitory effects of zinc and cadmium ions on agonist binding to adenosine A1 receptors in rat brain. Biochem Pharmacol 58:623–632

    Article  Google Scholar 

  • Sato M, Ohtomo K, Daimon T, Sugiyama T, Iijima K (1994) Localization of copper to afferent terminals in rat locus ceruleus, in contrast to mitochondrial copper in cerebellum. J Histochem Cytochem 42:1585–1591

    Google Scholar 

  • Sim JA, Chaumont S, Jo J, Ulmann L, Young MT, Cho K, Buell G, North RA, Rassendren F (2006) Altered hippocampal synaptic potentiation in P2X4 knock-out mice. J Neurosci 26:9006–9009

    Article  Google Scholar 

  • Slomianka L, Danscher G, Frederickson CJ (1990) Labeling of the neurons of origin of zinc-containing pathways by intraperitoneal injections of sodium selenite. Neuroscience 38:843–854

    Article  Google Scholar 

  • Solle M, Labasi J, Perregaux DG, Stam E, Petrushova N, Koller BH, Griffiths RJ, Gabel CA (2001) Altered cytokine production in mice lacking P2X(7) receptors. J Biol Chem 276:125–132

    Article  Google Scholar 

  • Somers W, Ultsch M, De Vos AM, Kossiakoff AA (1994) The X-ray structure of a growth hormone-prolactin receptor complex. Nature 372:478–81

    Article  ADS  Google Scholar 

  • Soto F, Garcia-Guzman M, Gomez-Hernandez JM, Hollmann M, Karschin C, Stuhmer W (1996) P2X4: an ATP-activated ionotropic receptor cloned from rat brain. Proc Natl Acad Sci USA 93:3684–3688

    Article  ADS  Google Scholar 

  • Stone TW (1991) Receptors for adenosine and adenine nucleotides. Gen Pharmacol 22:25–31

    Google Scholar 

  • Swaminath G, Lee TW, Kobilka B (2003) Identification of an allosteric binding site for Zn2+ on the beta2 adrenergic receptor. J Biol Chem 278:352–356

    Article  Google Scholar 

  • Takeda A, Hirate M, Tamano H, Oku N (2003) Zinc movement in the brain under kainate-induced seizures. Epilepsy Res 54:123–129

    Article  Google Scholar 

  • Trombley PQ, Shepherd GM (1996) Differential modulation by zinc and copper of amino acid receptors from rat olfactory bulb neurons. J Neurophysiol 76:2536–2546

    Google Scholar 

  • Virginio C, Church D, North RA, Surprenant A (1997) Effects of divalent cations, protons and calmidazolium at the rat P2X7 receptor. Neuropharmacology 36:1285–1294

    Article  Google Scholar 

  • Vogt K, Mellor J, Tong G, Nicoll R (2000) The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron 26:187–196

    Article  Google Scholar 

  • Wang Z, Danscher G, Kim YK, Dahlstrom A, Mook Jo S (2002) Inhibitory zinc-enriched terminals in the mouse cerebellum: double-immunohistochemistry for zinc transporter 3 and glutamate decarboxylase. Neurosci Lett 321:37–40

    Article  Google Scholar 

  • Watano T, Matsuoka I, Kimura J (2002) Inhibitory effects of metals on ATP-induced current through P2X7 receptor in NG108-15 cells. Jpn J Pharmacol 89:296–301

    Article  Google Scholar 

  • Weiser T, Wienrich M (1996) The effects of copper ions on glutamate receptors in cultured rat cortical neurons. Brain Res 742:211–218

    Article  Google Scholar 

  • Wildman SS, King BF, Burnstock G (1999) Modulation of ATP-responses at recombinant rP2X4 receptors by extracellular pH and zinc. Br J Pharmacol 126:762–768

    Article  Google Scholar 

  • Wildman SS, Unwin RJ, King BF (2003) Extended pharmacological profiles of rat P2Y2 and rat P2Y4 receptors and their sensitivity to extracellular H+ and Zn2+ ions. Br J Pharmacol 140:1177–1186

    Article  Google Scholar 

  • Williams K (1996) Separating dual effects of zinc at recombinant N-methyl-d-aspartate receptors. Neurosci Lett 215:9–12

    Article  Google Scholar 

  • Xiong K, Peoples RW, Montgomery JP, Chiang Y, Stewart RR, Weight FF, Li C (1999) Differential modulation by copper and zinc of P2X2 and P2X4 receptor function. J Neurophysiol 81:2088–2094

    Google Scholar 

  • Zhou B, Gitschier J (1997) hCTR1: a human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci USA 94:7481–7486

    Article  ADS  Google Scholar 

  • Zhou H, Thiele DJ (2001) Identification of a novel high affinity copper transport complex in the fission yeast Schizosaccharomyces pombe. J Biol Chem 276:20529–20535

    Article  Google Scholar 

Download references

Acknowledgments

C. Coddou and R. A. Lorca are CONICYT graduate student fellowship awardees. Partially funded by FONDAP grant 13980001; the Millennium Institute for Applied and Fundamental Biology, MIFAB, and the International Copper Association also contributed with grants to the Center development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pablo Huidobro-Toro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huidobro-Toro, J.P., Lorca, R.A. & Coddou, C. Trace metals in the brain: allosteric modulators of ligand-gated receptor channels, the case of ATP-gated P2X receptors. Eur Biophys J 37, 301–314 (2008). https://doi.org/10.1007/s00249-007-0230-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-007-0230-7

Keywords

Navigation