Skip to main content

Advertisement

Log in

Functional membrane diffusion of G-protein coupled receptors

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

G-protein-coupled receptor function involves interactions between the receptor, G-proteins and effectors in the cell plasma membrane. The main biochemical processes have been individually identified but the mechanisms governing the successive protein–protein interactions of this complex multi-molecular machinery have yet to be established. We discuss advances in understanding the functional dynamics of the receptor resulting from diffusion measurements, and in the context of the plasma membrane organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

GPCR:

G-protein-coupled receptor

FRAP:

Fluorescence recovery after photobleaching

vrFRAP:

Variable radius FRAP

SPT:

Single particle tracking

SMT:

Single molecule tracking

FCS:

Fluorescence correlation spectroscopy

References

  • Alves ID, Cowell SM, Salamon Z, Devanathan S, Tollin G, Hruby VJ (2004) Different structural states of the proteolipid membrane are produced by ligand binding to the human delta-opioid receptor as shown by plasmon-waveguide resonance spectroscopy. Mol Pharmacol 65:1248–1257

    Article  Google Scholar 

  • Baker A, Sauliere A, Gaibelet G, Lagane B, Mazeres S, Fourage M, Bachelerie F, Salome L, Lopez A, Dumas F (2007) CD4 interacts constituvely with multiple CCR5 at the plasma membrane of living cells: a vrFRAP approach. J Biol Chem (to appear)

  • Barak LS, Ferguson SS, Zhang J, Martenson C, Meyer T, Caron MG (1997) Internal rafficking and surface mobility of a functionally intact beta2-adrenergic receptor-green fluorescent protein conjugate. Mol Pharmacol 51:177–184

    Google Scholar 

  • Bates IR, Wiseman PW, Hanrahan JW (2006) Investigating membrane protein dynamics in living cells. Biochem Cell Biol 84:825–831

    Google Scholar 

  • Bockaert J, Pin JP (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. Embo J 18:1723–1729

    Article  Google Scholar 

  • Bouzigues C, Dahan M (2007) Transient directed motions of GABA(A) receptors in growth cones detected by a speed correlation index. Biophys J 92:654–660

    Article  Google Scholar 

  • Burack WR, Shaw AS (2000) Signal transduction: hanging on a scaffold. Curr Opin Cell Biol 12:211–216

    Article  Google Scholar 

  • Calvert PD, Govardovskii VI, Krasnoperova N, Anderson RE, Lem J, Makino CL (2001) Membrane protein diffusion sets the speed of rod phototransduction. Nature 411:90–94

    Article  ADS  Google Scholar 

  • Carman CV, Som T, Kim CM, Benovic JL (1998) Binding and phosphorylation of tubulin by G protein-coupled receptor kinases. J Biol Chem 273:20308–20316

    Article  Google Scholar 

  • Cezanne L, Lecat S, Lagane B, Millot C, Vollmer JY, Matthes H, Galzi JL, Lopez A (2004) Dynamic confinement of NK2 receptors in the plasma membrane. Improved FRAP analysis and biological relevance. J Biol Chem 279:45057–45067

    Article  Google Scholar 

  • Chen Y, Lagerholm BC, Yang B, Jacobson K (2006) Methods to measure the lateral diffusion of membrane lipids and proteins. Methods 39:147–153

    Article  Google Scholar 

  • Chidiac P (1998) Rethinking receptor-G protein-effector interactions. Biochem Pharmacol 55:549–556

    Article  Google Scholar 

  • Choquet D, Triller A (2003) The role of receptor diffusion in the organization of the postsynaptic membrane. Nat Rev Neurosci 4:251–265

    Article  Google Scholar 

  • Claing A, Laporte SA, Caron MG, Lefkowitz RJ (2002) Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and beta-arrestin proteins. Prog Neurobiol 66:61–79

    Article  Google Scholar 

  • Daumas F, Destainville N, Millot C, Lopez A, Dean D, Salome L (2003) Confined diffusion without fences of a g-protein-coupled receptor as revealed by single particle tracking. Biophys J 84:356–366

    Google Scholar 

  • Daumas F, Mazarguil H, Millot C, Lopez A, Salome L (2002) Probing functionalized gold colloids for single particle tracking experiments. Biochem Biophys Res Commun 295:610–615

    Article  Google Scholar 

  • Destainville N, Salome L (2006) Quantification and correction of systematic errors due to detector time-averaging in single-molecule tracking experiments. Biophys J 90:L17–L19

    Article  Google Scholar 

  • Dietrich C, Yang B, Fujiwara T, Kusumi A, Jacobson K (2002) Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys J 82:274–284

    Article  Google Scholar 

  • Digby GJ, Lober RM, Sethi PR, Lambert NA (2006) Some G protein heterotrimers physically dissociate in living cells. Proc Natl Acad Sci USA 103:17789–17794

    Article  ADS  Google Scholar 

  • Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438:578–580

    Article  ADS  Google Scholar 

  • Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A (2002) Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 157:1071–1081

    Article  Google Scholar 

  • Gales C, Rebois R, Hogue M, Trieu P, Breit A, Hebert T, Bouvier M (2005) Real-time monitoring of receptor and G-protein interactions in living cells. Nat Methods 2:177–184

    Article  Google Scholar 

  • Gales C, Van Durm J, Schaak S, Pontier S, Percherancier Y, Audet M, Paris H, Bouvier M (2006) Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes. Nat Struct Mol Biol 13:778–786

    Article  Google Scholar 

  • Gandhavadi M, Allende D, Vidal A, Simon SA, McIntosh TJ (2002) Structure, composition, and peptide binding properties of detergent soluble bilayers and detergent resistant rafts. Biophys J 82:1469–1482

    Google Scholar 

  • George N, Pick H, Vogel H, Johnsson N, Johnsson K (2004) Specific labeling of cell surface proteins with chemically diverse compounds. J Am Chem Soc 126:8896–8897

    Article  Google Scholar 

  • Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649

    Article  Google Scholar 

  • Gimpl G, Burger K, Fahrenholz F (2002) A closer look at the cholesterol sensor. Trends Biochem Sci 27:596–599

    Article  Google Scholar 

  • Harikumar KG, Puri V, Singh RD, Hanada K, Pagano RE, Miller LJ (2005) Differential effects of modification of membrane cholesterol and sphingolipids on the conformation, function, and trafficking of the G protein-coupled cholecystokinin receptor. J Biol Chem 280:2176–2185

    Article  Google Scholar 

  • Hegener O, Prenner L, Runkel F, Baader SL, Kappler J, Haberlein H (2004) Dynamics of beta2-adrenergic receptor-ligand complexes on living cells. Biochemistry 43:6190–6199

    Article  Google Scholar 

  • Henis YI, Hekman M, Elson EL, Helmreich EJ (1982) Lateral motion of beta receptors in membranes of cultured liver cells. Proc Natl Acad Sci USA 79:2907–2911

    Article  ADS  Google Scholar 

  • Horvat RD, Nelson S, Clay CM, Barisas BG, Roess DA (1999) Intrinsically fluorescent luteinizing hormone receptor demonstrates hormone-driven aggregation. Biochem Biophys Res Commun 255:382–385

    Article  Google Scholar 

  • Huet S, Karatekin E, Tran VS, Fanget I, Cribier S, Henry JP (2006) Analysis of transient behavior in complex trajectories: application to secretory vesicle dynamics. Biophys J 91:3542–3559

    Article  Google Scholar 

  • Hur EM, Kim KT (2002) G protein-coupled receptor signalling and cross-talk: achieving rapidity and specificity. Cell Signal 14:397–405

    Article  Google Scholar 

  • Jacquier V (2005) Functional characterization of a human odorant receptor. Ecole polytechnique fédérale de Lausanne, Lausanne

  • Jacquier V, Prummer M, Segura JM, Pick H, Vogel H (2006) Visualizing odorant receptor trafficking in living cells down to the single-molecule level. Proc Natl Acad Sci USA 103:14325–14330

    Article  ADS  Google Scholar 

  • Jans DA, Peters R, Fahrenholz F (1990a) An inverse relationship between receptor internalization and the fraction of laterally mobile receptors for the vasopressin renal-type V2-receptor. An active role for receptor immobilization in down-regulation? FEBS Lett 274:223–226

    Article  Google Scholar 

  • Jans DA, Peters R, Fahrenholz F (1990b) Lateral mobility of the phospholipase C-activating vasopressin V1-type receptor in A7r5 smooth muscle cells: a comparison with the adenylate cyclase-coupled V2-receptor. Embo J 9:2693–2699

    Google Scholar 

  • Jans DA, Peters R, Zsigo J, Fahrenholz F (1989) The adenylate cyclase-coupled vasopressin V2-receptor is highly laterally mobile in membranes of LLC-PK1 renal epithelial cells at physiological temperature. Embo J 8:2481–2488

    Google Scholar 

  • Jiao X, Zhang N, Xu X, Oppenheim JJ, Jin T (2005) Ligand-induced partitioning of human CXCR1 chemokine receptors with lipid raft microenvironments facilitates G-protein-dependent signaling. Mol Cell Biol 25:5752–5762

    Article  Google Scholar 

  • Kallal L, Benovic JL (2000) Using green fluorescent proteins to study G-protein-coupled receptor localization and trafficking. Trends Pharmacol Sci 21:175–180

    Article  Google Scholar 

  • Kenakin T (2002) Efficacy at G-protein-coupled receptors. Nat Rev 11:103–110

    Google Scholar 

  • Kristiansen K (2004) Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther 103:21–80

    Article  Google Scholar 

  • Kwik J, Boyle S, Fooksman D, Margolis L, Sheetz MP, Edidin M (2003) Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin. Proc Natl Acad Sci USA 100:13964–13969

    Article  ADS  Google Scholar 

  • Lagerholm BC, Weinreb GE, Jacobson K, Thompson NL (2005) Detecting microdomains in intact cell membranes. Annu Rev Phys Chem 56:309–336

    Article  Google Scholar 

  • Lill Y, Martinez KL, Lill MA, Meyer BH, Vogel H, Hecht B (2005) Kinetics of the initial steps of g protein-coupled receptor-mediated cellular signaling revealed by single-molecule imaging. Chemphyschem 6:1633–1640

    Article  Google Scholar 

  • Marguet D, Lenne PF, Rigneault H, He HT (2006) Dynamics in the plasma membrane: how to combine fluidity and order. Embo J 25:3446–3457

    Article  Google Scholar 

  • Meilhac N, Le Guyader L, Salome L, Destainville N (2006) Detection of confinement and jumps in single-molecule membrane trajectories. Phys Rev E Stat Nonlin Soft Matter Phys 73:011915

    ADS  Google Scholar 

  • Meissner O, Haberlein H (2003) Lateral mobility and specific binding to GABA(A) receptors on hippocampal neurons monitored by fluorescence correlation spectroscopy. Biochemistry 42:1667–1672

    Article  Google Scholar 

  • Munro S (2003) Lipid rafts: elusive or illusive? Cell 115:377–388

    Article  Google Scholar 

  • Nelson S, Horvat RD, Malvey J, Roess DA, Barisas BG, Clay CM (1999) Characterization of an intrinsically fluorescent gonadotropin-releasing hormone receptor and effects of ligand binding on receptor lateral diffusion. Endocrinology 140:950–957

    Article  Google Scholar 

  • Neubig RR (1994) Membrane organization in G-protein mechanisms. FASEB J 8:939–946

    Google Scholar 

  • Niswender GD, Roess DA, Sawyer HR, Silvia WJ, Barisas BG (1985) Differences in the lateral mobility of receptors for luteinizing hormone (LH) in the luteal cell plasma membrane when occupied by ovine LH versus human chorionic gonadotropin. Endocrinology 116:164–169

    Article  Google Scholar 

  • Pike LJ (2003) Lipid rafts: bringing order to chaos. J Lipid Res 44:655–667

    Article  MathSciNet  Google Scholar 

  • Pike LJ (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res 47:1597–1598

    Article  Google Scholar 

  • Pucadyil TJ, Chattopadhyay A (2007) Cholesterol depletion induces dynamic confinement of the G-protein coupled serotonin(1A) receptor in the plasma membrane of living cells. Biochim Biophys Acta 1768:655–668

    Article  Google Scholar 

  • Pucadyil TJ, Kalipatnapu S, Harikumar KG, Rangaraj N, Karnik SS, Chattopadhyay A (2004) G-protein-dependent cell surface dynamics of the human serotonin1A receptor tagged to yellow fluorescent protein. Biochemistry 43:15852–15862

    Article  Google Scholar 

  • Rebois R, Robitaille M, Gales C, Dupre D, Baragli A, Trieu P, Ethier N, Bouvier M, Hebert T (2006) Heterotrimeric G proteins form stable complexes with adenylyl cyclase and Kir3.1 channels in living cells. J Cell Sci 119:2807–2818

    Article  Google Scholar 

  • Roess DA, Horvat RD, Munnelly H, Barisas BG (2000) Luteinizing hormone receptors are self-associated in the plasma membrane. Endocrinology 141:4518–4523

    Article  Google Scholar 

  • Roettger BF, Pinon DI, Burghardt TP, Miller LJ (1999) Regulation of lateral mobility and cellular trafficking of the CCK receptor by a partial agonist. Am J Physiol 276:C539–C547

    Google Scholar 

  • Sako Y, Yanagida T (2003) Single-molecule visualization in cell biology. Nat Rev Mol Cell Biol Suppl SS1–SS5

  • Salamon Z, Hruby VJ, Tollin G, Cowell S (2002) Binding of agonists, antagonists and inverse agonists to the human delta-opioid receptor produces distinctly different conformational states distinguishable by plasmon-waveguide resonance spectroscopy. J Pept Res 60:322–328

    Article  Google Scholar 

  • Salome L, Cazeils JL, Lopez A, Tocanne JF (1998) Characterization of membrane domains by FRAP experiments at variable observation areas. Eur Biophys J 27:391–402

    Article  Google Scholar 

  • Sauliere A, Gaibelet G, Millot C, Mazeres S, Lopez A, Salome L (2006) Diffusion of the mu opioid receptor at the surface of human neuroblastoma SH-SY5Y cells is restricted to permeable domains. FEBS Lett 580:5227–5231

    Article  Google Scholar 

  • Serge A, Fourgeaud L, Hemar A, Choquet D (2002) Receptor activation and homer differentially control the lateral mobility of metabotropic glutamate receptor 5 in the neuronal membrane. J Neurosci 22:3910–3920

    Google Scholar 

  • Serge A, Fourgeaud L, Hemar A, Choquet D (2003) Active surface transport of metabotropic glutamate receptors through binding to microtubules and actin flow. J Cell Sci 116:5015–5022

    Article  Google Scholar 

  • Smith SM, Lei Y, Liu J, Cahill ME, Hagen GM, Barisas BG, Roess DA (2006) Luteinizing hormone receptors translocate to plasma membrane microdomains after binding of human chorionic gonadotropin. Endocrinology 147:1789–1795

    Article  Google Scholar 

  • Steffens CM, Hope TJ (2004) Mobility of the human immunodeficiency virus (HIV) receptor CD4 and coreceptor CCR5 in living cells: implications for HIV fusion and entry events. J Virol 78:9573–9578

    Article  Google Scholar 

  • Suzuki K, Ritchie K, Kajikawa E, Fujiwara T, Kusumi A (2005) Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques. Biophys J 88:3659–3680

    Article  Google Scholar 

  • Tirat A, Freuler F, Stettler T, Mayr LM, Leder L (2006) Evaluation of two novel tag-based labelling technologies for site-specific modification of proteins. Int J Biol Macromol 39:66–76

    Article  Google Scholar 

  • Tolkovsky AM, Levitzki A (1978) Mode of coupling between the beta-adrenergic receptor and adenylate cyclase in turkey erythrocytes. Biochemistry 17:3795

    Article  Google Scholar 

  • Tsunoda S, Sierralta J, Sun Y, Bodner R, Suzuki E, Becker A, Socolich M, Zuker CS (1997) A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature 388:243–249

    Article  ADS  Google Scholar 

  • Vrljic M, Nishimura SY, Moerner WE, McConnell HM (2005) Cholesterol depletion suppresses the translational diffusion of class II major histocompatibility complex proteins in the plasma membrane. Biophys J 88:334–347

    Article  Google Scholar 

  • Wawrezinieck L, Rigneault H, Marguet D, Lenne PF (2005) Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys J 89:4029–4042

    Article  Google Scholar 

  • Wenger J, Conchonaud F, Dintinger J, Wawrezinieck L, Ebbesen TW, Rigneault H, Marguet D, Lenne PF (2006) Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization. Biophys J 92:913–919

    Article  Google Scholar 

  • White J, Stelzer E (1999) Photobleaching GFP reveals protein dynamics inside live cells. Trends Cell Biol 9:61–65

    Article  Google Scholar 

  • Young SH, Walsh JH, Rozengurt E, Slice LW (2001) Agonist-dependent immobilization of chimeric bombesin/GRP receptors: dependence on c-Src activity and dissociation from internalization. Exp Cell Res 267:37–44

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank F. Daumas and F. Viala for their help in editing the figures. We apologize in advance to the authors whose work we have omitted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Salomé.

Additional information

Aurélie Baker and Aude Saulière contributed equally to this work.

Presented at the joint biannual meeting of the SFB-GEIMM-GRIP, Anglet France, 14–19 October, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, A., Saulière, A., Dumas, F. et al. Functional membrane diffusion of G-protein coupled receptors. Eur Biophys J 36, 849–860 (2007). https://doi.org/10.1007/s00249-007-0214-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-007-0214-7

Keywords

Navigation