Skip to main content
Log in

Opened by a twist: a gating mechanism for the nicotinic acetylcholine receptor

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Amiri S, Tai K, Beckstein O, Biggin PC, Sansom MS (2005) The alpha7 nicotinic acetylcholine receptor: molecular modelling, electrostatics, and energetics. Mol Membr Biol 22:151–162

    Article  Google Scholar 

  • Bahar I, Rader AJ (2005) Coarse-grained normal mode analysis in structural biology. Curr Opin Struct Biol 15:586–592

    Article  Google Scholar 

  • Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des 2:173–181

    Article  Google Scholar 

  • Balog E, Becker T, Oettl M, Lechner R, Daniel R, Finney J, Smith JC (2004) Direct determination of vibrational density of states change on ligand binding to a protein. Phys Rev Lett 93:028103

    Article  ADS  Google Scholar 

  • Barrantes FJ (2004) Structural basis for lipid modulation of nicotinic acetylcholine receptor function. Brain Res Brain Res Rev 47:71–95

    Article  Google Scholar 

  • Beckstein O, Sansom MS (2006) A hydrophobic gate in an ion channel: the closed state of the nicotinic acetylcholine receptor. Phys Biol 3:147–159

    Article  ADS  Google Scholar 

  • Bertrand D, Devillers-Thiery A, Revah F, Galzi JL, Hussy N, Mulle C, Bertrand S, Ballivet M, Changeux JP (1992) Unconventional pharmacology of a neuronal nicotinic receptor mutated in the channel domain. Proc Natl Acad Sci USA 89:1261–1265

    Article  ADS  Google Scholar 

  • Bocquet N, Prado de Carvalho L, Cartaud J, Neyton J, Le Poupon C, Taly A, Grutter T, Changeux JP, Corringer PJ (2007) A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family. Nature 445:116–119

    Article  ADS  Google Scholar 

  • Bouzat C, Gumilar F, Spitzmaul G, Wang HL, Rayes D, Hansen SB, Taylor P, Sine SM (2004) Coupling of agonist binding to channel gating in an ACh-binding protein linked to an ion channel. Nature 430:896–900

    Article  ADS  Google Scholar 

  • Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van Der Oost J, Smit AB, Sixma TK (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411:269–276

    Article  ADS  Google Scholar 

  • Changeux JP, Edelstein SJ (2005) Allosteric mechanisms of signal transduction. Science 308:1424–1428

    Article  ADS  Google Scholar 

  • Cheng X, Lu B, Grant B, Law RJ, McCammon JA (2006a) Channel opening motion of alpha7 nicotinic acetylcholine receptor as suggested by normal mode analysis. J Mol Biol 355:310–324

    Article  Google Scholar 

  • Cheng X, Wang H, Grant B, Sine SM, McCammon JA (2006b) Targeted molecular dynamics study of C-loop closure and channel gating in nicotinic receptors. PLoS Comput Biol 2:e134

    Article  Google Scholar 

  • Corradi J, Spitzmaul G, De Rosa MJ, Costabel M, Bouzat C (2007) Role of pairwise interactions between M1 and M2 domains of the nicotinic receptor in channel gating. Biophys J 92:76–86

    Article  Google Scholar 

  • Corringer PJ, Le Novere N, Changeux JP (2000) Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol 40:431–458

    Article  Google Scholar 

  • Corry B (2004) Theoretical conformation of the closed and open states of the acetylcholine receptor channel. Biochim Biophys Acta 1663:2–5

    Article  Google Scholar 

  • Corry B (2006) An energy-efficient gating mechanism in the acetylcholine receptor channel suggested by molecular and Brownian dynamics. Biophys J 90:799–810

    Article  Google Scholar 

  • Cozzetto D, Tramontano A (2005) Relationship between multiple sequence alignments and quality of protein comparative models. Proteins 58:151–157

    Article  Google Scholar 

  • Delarue M, Dumas P (2004) On the use of low-frequency normal modes to enforce collective movements in refining macromolecular structural models. Proc Natl Acad Sci USA 101:6957–6962

    Article  ADS  Google Scholar 

  • Dutertre S, Lewis RJ (2006) Toxin insights into nicotinic acetylcholine receptors. Biochem Pharmacol 72:661–670

    Article  Google Scholar 

  • Edelstein SJ, Changeux JP (1996) Allosteric proteins after thirty years: the binding and state functions of the neuronal alpha 7 nicotinic acetylcholine receptors. Experientia 52:1083–1090

    Article  Google Scholar 

  • Engel AG, Sine SM (2005) Current understanding of congenital myasthenic syndromes. Curr Opin Pharmacol 5:308–321

    Article  Google Scholar 

  • Fruchart-Gaillard C, Gilquin B, Antil-Delbeke S, Le Novere N, Tamiya T, Corringer PJ, Changeux JP, Menez A, Servent D (2002) Experimentally based model of a complex between a snake toxin and the alpha 7 nicotinic receptor. Proc Natl Acad Sci USA 99:3216–3221

    Article  ADS  Google Scholar 

  • Grunberg R, Nilges M, Leckner J (2006) Flexibility and conformational entropy in protein-protein binding. Structure 14:683–693

    Article  Google Scholar 

  • Grutter T, de Carvalho LP, Dufresne V, Taly A, Edelstein SJ, Changeux JP (2005a) Molecular tuning of fast gating in pentameric ligand-gated ion channels. Proc Natl Acad Sci USA 102:18207–18212

    Article  ADS  Google Scholar 

  • Grutter T, Prado de Carvalho L, Virginie D, Taly A, Fischer M, Changeux JP (2005b) A chimera encoding the fusion of an acetylcholine-binding protein to an ion channel is stabilized in a state close to the desensitized form of ligand-gated ion channels. C R Biol 328:223–234

    Article  Google Scholar 

  • Hinsen K (1998) Analysis of domain motions by approximate normal mode calculations. Proteins 33:417–429

    Article  Google Scholar 

  • Hung A, Tai K, Sansom MS (2005) Molecular dynamics simulation of the M2 helices within the nicotinic acetylcholine receptor transmembrane domain: structure and collective motions. Biophys J 88:3321–3333

    Article  Google Scholar 

  • Kash TL, Jenkins A, Kelley JC, Trudell JR, Harrison NL (2003) Coupling of agonist binding to channel gating in the GABA(A) receptor. Nature 421:272–275

    Article  ADS  Google Scholar 

  • Katz B, Thesleff S (1957) A study of the desensitization produced by acetylcholine at the motor end-plate. J Physiol 138:63–80

    Google Scholar 

  • Konstantakaki M, Changeux J-P, Taly A (2007) Docking of a-cobratoxin suggests a basal conformation of the nicotinic receptor, Biochem. Biophys Res Commun. doi:10.1016/j.bbrc.2007.05.126

  • Law RJ, Henchman RH, McCammon JA (2005) A gating mechanism proposed from a simulation of a human alpha7 nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 102:6813–6818

    Article  ADS  Google Scholar 

  • Le Novere N, Corringer PJ, Changeux JP (2002a) The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. J Neurobiol 53:447–456

    Article  Google Scholar 

  • Le Novere N, Grutter T, Changeux JP (2002b) Models of the extracellular domain of the nicotinic receptors and of agonist- and Ca2+-binding sites. Proc Natl Acad Sci USA 99:3210–3215

    Article  ADS  Google Scholar 

  • Lummis SC, Beene DL, Lee LW, Lester HA, Broadhurst RW, Dougherty DA (2005) Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature 438:248–252

    Article  ADS  Google Scholar 

  • Middleton RE, Strnad NP, Cohen JB (1999) Photoaffinity labeling the torpedo nicotinic acetylcholine receptor with [(3)H]tetracaine, a nondesensitizing noncompetitive antagonist. Mol Pharmacol 56:290–299

    Google Scholar 

  • Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423:949–955

    Article  ADS  Google Scholar 

  • Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  Google Scholar 

  • Moore MA, McCarthy MP (1995) Snake venom toxins, unlike smaller antagonists, appear to stabilize a resting state conformation of the nicotinic acetylcholine receptor. Biochim Biophys Acta 1235:336–342

    Article  Google Scholar 

  • Mourot A, Grutter T, Goeldner M, Kotzyba-Hibert F (2006) Dynamic structural investigations on the torpedo nicotinic acetylcholine receptor by time-resolved photoaffinity labeling. Chembiochem 7:570–583

    Article  Google Scholar 

  • Nicolay S, Sanejouand YH (2006) Functional modes of proteins are among the most robust. Phys Rev Lett 96:078104

    Article  ADS  Google Scholar 

  • Paas Y, Cartaud J, Recouvreur M, Grailhe R, Dufresne V, Pebay-Peyroula E, Landau EM, Changeux JP (2003) Electron microscopic evidence for nucleation and growth of 3D acetylcholine receptor microcrystals in structured lipid-detergent matrices. Proc Natl Acad Sci USA 100:11309–11314

    Article  ADS  Google Scholar 

  • Perutz MF (1989) Mechanisms of cooperativity and allosteric regulation in proteins. Q Rev Biophys 22:139–237

    Google Scholar 

  • Pons S, Sallette J, Bourgeois JP, Taly A, Changeux JP, Devillers-Thiery A (2004) Critical role of the C-terminal segment in the maturation and export to the cell surface of the homopentameric alpha 7-5HT3A receptor. Eur J Neurosci 20:2022–2030

    Article  Google Scholar 

  • Saladino AC, Xu Y, Tang P (2005) Homology modeling and molecular dynamics simulations of transmembrane domain structure of human neuronal nicotinic acetylcholine receptor. Biophys J 88:1009–1017

    Article  Google Scholar 

  • Sine SM, Engel AG (2006) Recent advances in Cys-loop receptor structure and function. Nature 440:448–455

    Article  ADS  Google Scholar 

  • Sixma TK, Smit AB (2003) Acetylcholine binding protein (AChBP): a secreted glial protein that provides a high-resolution model for the extracellular domain of pentameric ligand-gated ion channels. Annu Rev Biophys Biomol Struct 32:311–334

    Article  Google Scholar 

  • Smit AB, Syed NI, Schaap D, van Minnen J, Klumperman J, Kits KS, Lodder H, van der Schors RC, van Elk R, Sorgedrager B, Brejc K, Sixma TK, Geraerts WP (2001) A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature 411:261–268

    Article  ADS  Google Scholar 

  • Steinlein OK (2004) Genetic mechanisms that underlie epilepsy. Nat Rev Neurosci 5:400–408

    Article  Google Scholar 

  • Taly A, Delarue M, Grutter T, Nilges M, Le Novere N, Corringer PJ, Changeux JP (2005) Normal mode analysis suggests a quaternary twist model for the nicotinic receptor gating mechanism. Biophys J 88:3954–3965

    Article  Google Scholar 

  • Taly A, Corringer PJ, Grutter T, de Carvalho LP, Karplus M, Changeux JP (2006) Implications of the quaternary twist allosteric model for the physiology and pathology of nicotinic acetylcholine receptors. Proc Natl Acad Sci USA 103:16965–16970

    Article  ADS  Google Scholar 

  • Tama F, Wriggers W, Brooks CL III (2002) Exploring global distortions of biological macromolecules and assemblies from low-resolution structural information and elastic network theory. J Mol Biol 321:297–305

    Article  Google Scholar 

  • Tama F, Miyashita O, Brooks CL III (2004a) Flexible multi-scale fitting of atomic structures into low-resolution electron density maps with elastic network normal mode analysis. J Mol Biol 337:985–999

    Article  Google Scholar 

  • Tama F, Miyashita O, Brooks CL III (2004b) Normal mode based flexible fitting of high-resolution structure into low-resolution experimental data from cryo-EM. J Struct Biol 147:315–326

    Article  Google Scholar 

  • Tasneem A, Iyer LM, Jakobsson E, Aravind L (2005) Identification of the prokaryotic ligand-gated ion channels and their implications for the mechanisms and origins of animal Cys-loop ion channels. Genome Biol 6:R4

    Article  Google Scholar 

  • Tirion MM (1996) Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys Rev Lett 77:1905–1908

    Article  ADS  Google Scholar 

  • Unwin N (1993) Nicotinic acetylcholine receptor at 9 A resolution. J Mol Biol 229:1101–1124

    Article  Google Scholar 

  • Unwin N (1995) Acetylcholine receptor channel imaged in the open state. Nature 373:37–43

    Article  ADS  Google Scholar 

  • Unwin N (2000) The Croonian Lecture 2000. Nicotinic acetylcholine receptor and the structural basis of fast synaptic transmission. Philos Trans R Soc Lond B Biol Sci 355:1813–1829

    Article  Google Scholar 

  • Unwin N (2003) Structure and action of the nicotinic acetylcholine receptor explored by electron microscopy. FEBS Lett 555:91–95

    Article  Google Scholar 

  • Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4 A resolution. J Mol Biol 346:967–989

    Article  Google Scholar 

  • Unwin N, Miyazawa A, Li J, Fujiyoshi Y (2002) Activation of the nicotinic acetylcholine receptor involves a switch in conformation of the alpha subunits. J Mol Biol 319:1165–1176

    Article  Google Scholar 

  • Vemparala S, Saiz L, Eckenhoff RG, Klein ML (2006) Partitioning of anesthetics into a lipid bilayer and their interaction with membrane-bound peptide bundles. Biophys J 91:2815–2825

    Article  Google Scholar 

  • Wilson G, Karlin A (2001) Acetylcholine receptor channel structure in the resting, open, and desensitized states probed with the substituted-cysteine-accessibility method. Proc Natl Acad Sci USA 98:1241–1248

    Article  ADS  Google Scholar 

  • Xu Y, Barrantes FJ, Luo X, Chen K, Shen J, Jiang H (2005) Conformational dynamics of the nicotinic acetylcholine receptor channel: a 35-ns molecular dynamics simulation study. J Am Chem Soc 127:1291–1299

    Article  Google Scholar 

  • Xu Y, Barrantes FJ, Shen J, Luo X, Zhu W, Chen K, Jiang H (2006a) Blocking of the nicotinic acetylcholine receptor ion channel by chlorpromazine, a noncompetitive inhibitor: a molecular dynamics simulation study. J Phys Chem B Condens Matter Mater Surf Interfaces Biophys 110:20640–20648

    Google Scholar 

  • Xu Y, Luo X, Shen J, Zhu W, Chen K, Jiang H (2006b) Molecular dynamics of nicotinic acetylcholine receptor correlating biological functions. Curr Protein Pept Sci 7:195–200

    Article  Google Scholar 

  • Zhang H, Karlin A (1997) Identification of acetylcholine receptor channel-lining residues in the M1 segment of the beta-subunit. Biochemistry 36:15856–15864

    Article  Google Scholar 

Download references

Acknowledgments

Professor Jean-Pierre Changeux and Dr Valérie Taly are acknowledged for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Taly.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (MPG 1.3Mb)

ESM2 (MPG 1.5Mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taly, A. Opened by a twist: a gating mechanism for the nicotinic acetylcholine receptor. Eur Biophys J 36, 911–918 (2007). https://doi.org/10.1007/s00249-007-0189-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-007-0189-4

Keywords

Navigation