Skip to main content
Log in

Structure and elastic properties of tunneling nanotubes

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We investigate properties of a reported new mechanism for cell–cell interactions, tunneling nanotubes (TNT’s). TNT’s mediate actin-based transfer of vesicles and organelles and they allow signal transmission between cells. The effects of lateral pulling with polystyrene beads trapped by optical tweezers on TNT’s linking separate U-87 MG human glioblastoma cells in culture are described. This cell line was chosen for handling ease and possible pathology implications of TNT persistence in communication between cancerous cells. Observed nanotubes are shown to have the characteristic features of TNT’s. We find that pulling induces two different types of TNT bifurcations. In one of them, termed V-Y bifurcation, the TNT is first distorted into a V-shaped form, following which a new branch emerges from the apex. In the other one, termed I-D bifurcation, the pulled TNT is bent into a curved arc of increasingly broader span. Curves showing the variation of pulling force with displacement are obtained. Results yield information on TNT structure and elastic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baluska F, Volkmann D, Barlow PW (2004) Eukaryotic cells and their cell bodies: Cell theory revised. Ann Bot 94:9–32

    Article  Google Scholar 

  • Bo L, Waugh RE (1989) Determination of bilayer membrane bending stiffness by tether formation from giant, thin-walled vesicles. Biophys J 66:509–517

    Google Scholar 

  • Bukman DJ, Yao JH, Wortis M (1996) Stability of cylindrical vesicles under axial tension. Phys Rev E 54:5463–5468

    Article  ADS  Google Scholar 

  • Dai J, Sheetz MP (1995) Mechanical properties of neuronal growth cone membrane studied by tether formation with laser optical tweezers. Biophys J 68:988–996

    Google Scholar 

  • Dai J, Sheetz MP (1999) Membrane tether formation from blebbing cells. Biophys J 77:3363–3370

    Google Scholar 

  • Dai J, Sheetz MP, Wan X, Morris CE (1998) Membrane tension in swelling and shrinking molluscan neurons. J Neurosci 18:6681–6692

    Google Scholar 

  • Derényi I, Jülicher F, Prost J (2002) Formation and interaction of membrane tubes. Phys Rev Lett 88:238101 1–238101 4

    Article  ADS  Google Scholar 

  • Gustafson T, Wolpert L (1961) Studies on the cellular basis of morphogenesis in the sea urchin embryo: directed movements of primary mesenchime cells in normal and vegetalized larvae. Exp Cell Res 24:64–79

    Article  Google Scholar 

  • Hochmuth RM, Shao JY, Dai J, Sheetz MP (1996) Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophys J 70:356–369

    Google Scholar 

  • Hodneland E, Lundervold A, Gurke S, Tai X-C, Rustom A, Gerdes H-H (2006) Automated detection of tunneling nanotubes in 3d images. Cytometry A 69:961–972

    Google Scholar 

  • Hsiung F, Ramírez-Weber F-A, Iwaki DD, Kornberg TB (2005) Dependence of drosophila wing imaginal disc cytonemes on decapentaplegic. Nature 437:560–563

    Article  ADS  Google Scholar 

  • Karlsson A, Karlsson R, Karlsson M, Cans A-S, Strömberg A, Ryttsén F, Orwar O (2001) Networks of nanotubes and containers. Nature 409:150–152

    Article  ADS  Google Scholar 

  • Karlsson M, Sott K, Davidson M, Cans A-S, Linderholm P, Chiu D, Orwar O (2002) Formation of geometrically complex lipid nanotube-vesicle networks of higher-order topologies. Proc Natl Acad Sci USA 99:11573–11578

    Article  ADS  Google Scholar 

  • Kater SB, Rehder V (1995) The sensory-motor role of growth cone filopodia. Curr Opin Neurobiol 5:68–74

    Article  Google Scholar 

  • Koster G, Cacciuto A, Derényi I, Frenkel D, Dogterom M (2005) Force barriers for membrane tube formation. Phys Rev Lett 94:068101–068104

    Article  ADS  Google Scholar 

  • Lemmon EW, McLinden MO, Friend DG (2005) Thermophysical properties of fluid systems. In: Linstrom PJ, Mallard WG (Eds) NIST chemistry WebBook. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  • Li Z, Anvari B, Takashima M, Brecht P, Torres JH, Brownell WE (2002) Membrane tether formation from outer hair cells with optical tweezers. Biophys J 82:1386–1395

    Google Scholar 

  • Lidke DS, Lidke KA, Rieger B, Jovin TM, Arndt-Jovi DJ (2005) Reaching out for signals: filopodia sense egf and respond by directed retrograde transport of activated receptors. J Cell Biol 170:619–626

    Article  Google Scholar 

  • Mogilner R, Rubinstein B (2005) The physics of filopodial protrusion. Biophys J 89:782–795

    Article  Google Scholar 

  • Önfelt B, Nedvetzki S, Yanigi K, Davis DM (2004) Cutting edge: membrane nanotubes connect immune cells. J Immunol 173:1511–1513

    Google Scholar 

  • Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809

    Article  ADS  Google Scholar 

  • Pollard TD, Blanchoin L, Mullins RD (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct 29:545–576

    Article  Google Scholar 

  • Powers TR, Huber G, Goldstein RE (2002) Fluid-membrane tethers: minimal surfaces and elastic boundary layers. Phys Rev E 65:041901 1–041901 11

    ADS  Google Scholar 

  • Ramírez-Weber F-A, Kornberg TB (1999) Cytonemes: cellular processes that project to the principal signaling center in drosophila imaginal discs. Cell 97:599–607

    Article  Google Scholar 

  • Raucher D, Sheetz MP (1999) Characteristics of a membrane reservoir buffering membrane tension. Biophys J 77:1992–2002

    Google Scholar 

  • Rustom A, Saffrich R, Marcovik I, Walther P, Gerdes H-H (2004) Nanotubular highways for intercellular organelle transport. Science 303: 1007–1010

    Article  ADS  Google Scholar 

  • Rorth P (2003) Communication by touch: role of cellular extensions in complex animals. Cell 112:595–598

    Article  Google Scholar 

  • Sant’Anna C, Campanati L, Gadelha C, Lourenço D, Labati-Terra L, Bittencourt-Silvestre J, Benchimol M, Cunha-e-Silva NL, De Souza W (2005) Improvement on the visualization of cytoskeletal structures of protozoan parasites using high-resolution field emission scanning electron microscopy (fesem). Histochem Cell Biol 124:87–95

    Article  Google Scholar 

  • Schliwa M, van Blerkom J (1981) Structural interaction of cytoskeletal components. J Cell Biol 90:222–235

    Article  Google Scholar 

  • Sheetz MP (2001) Cell control by membrane-cytoskeleton adhesion. Nat Rev Mol Cell Biol 2:392–396

    Article  Google Scholar 

  • Smith A-S, Sackmann E, Seifert U (2004) Pulling tethers from adhered vesicles. Phys Rev Lett 92:28101–28104

    Article  ADS  Google Scholar 

  • Sun M, Graham JS, Hegedüs B, Marga F, Zhang Y, Forgacs G, Grandbois M (2005) Multiple membrane tethers probed by atomic force spectroscopy. Biophys J 89:4320–4329

    Article  Google Scholar 

  • Svitkina TM, Bulanova EA, Chaga OL, Vignjevic DM, Kojima S-i, Vasiliev JM, Borisy GG (2003) Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 160:409–421

    Article  Google Scholar 

  • Titushkin I, Cho M (2006) Distinct membrane mechanical properties of human mesenchymal stem cells determined using laser optical tweezers. Biophys J 90:2582–2591

    Article  Google Scholar 

  • Upadhyaya A, Sheetz MP (2004) Tension in tubulovesicular networks of golgi and endoplasmic reticulum membranes. Biophys J 86:2923–2928

    Article  Google Scholar 

  • Viana NB, Rocha MS, Mesquita ON, Mazolli A, Maia Neto PA (2006a) Characterization of objective transmittance for optical tweezers. Appl Opt 45:4263–4269

    Article  ADS  Google Scholar 

  • Viana NB, Rocha MS, Mesquita ON, Mazolli A, Maia Neto PA, Nussenzveig HM (2006b) Absolute calibration of optical tweezers. Appl Phys Lett 88:131110–131113

    Article  ADS  Google Scholar 

  • Vignjevic D, Kojima S-, Aratyn Y, Danciu O, Svitkina T, Borisy GG (2006) Role of fascin in filopodial protrusion. J Cell Biol 174:863–875

    Article  Google Scholar 

  • Watkins SC, Salter RD (2005) Functional connectivity between immune cells mediated by tunneling nanotubes. Immunity 23:309–318

    Article  Google Scholar 

  • Wood W, Martin P (2002) Structures in focus—filopodia. Int J Biochem Cell Biol 34:726–730

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Instituto do Milênio de Nanociências, Instituto do Milênio de Avanço Global e Integrado da Matemática Brasileira, Fundação de Amparo à Pesquisa do Rio de Janeiro (FAPERJ) and Fundação Universitária José Bonifácio (FUJB). We thank Jair Koiller and Gerusa Alexsandra de Araújo for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Moysés Nussenzveig.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Movie M1. Vesicle transfer along TNT to U-87 MG cell under stress (no CO2). Real time interval 12.5 min. (MPG 1.06 Mb)

Movie M2. TNT formation through separation of two initially linked U-87 MG cells. Real time interval 1.7 min. (MPG 844 kb)

Movie M3. Left: V-Y bifurcation. Real time interval 6.7 min. Right: Simultaneous force ´ displacement graph. Curve drawn to guide the eye. (MPG 828 kb)

Movie M4. Left: I-D bifurcation. Real time interval 12 sec. Right: Simultaneous force ´ displacement graph. Curve drawn to guide the eye. Images treated with ImageJ Shadow north filter. (MPG 806 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pontes, B., Viana, N.B., Campanati, L. et al. Structure and elastic properties of tunneling nanotubes. Eur Biophys J 37, 121–129 (2008). https://doi.org/10.1007/s00249-007-0184-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-007-0184-9

Keywords

Navigation