Skip to main content
Log in

Magnetic resonance in the solid state: applications to protein folding, amyloid fibrils and membrane proteins

  • The EBSA prize lecture
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Solid-state nuclear magnetic resonance (ssNMR) represents a spectroscopic method to study non-crystalline molecules at atomic resolution. Advancements in spectroscopy and biochemistry provide increasing possibilities to study structure and dynamics of complex biomolecular systems by ssNMR. Here, methodological aspects and applications in the context of protein folding and aggregation are discussed. In addition, studies involving membrane proteins are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andrew ER, Bradbury A, Eades RG (1958) Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 182:1659

    Article  ADS  Google Scholar 

  • Andronesi OC, Pfeifer JR, Al-Momani L, Özdirekcan S, Rijkers DTS, Angerstein B, Luca S, Koert U, Killian JA, Baldus M (2004) Probing membrane protein structure and orientation under fast magic-angle-spinning. J Biomol NMR 30:253–265

    Article  Google Scholar 

  • Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M (2005) Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. J Am Chem Soc 127:12965–12974

    Article  Google Scholar 

  • Balbach J, Forge V, Lau WS, van Nuland NAJ, Brew K, Dobson CM (1996) Protein folding monitored at individual residues during a two-dimensional NMR experiment. Science 274:1161–1163

    Article  ADS  Google Scholar 

  • Baldus M (2002) Correlation experiments for assignment and structure elucidation of immobilized polypeptides under magic angle spinning. Prog Nucl Magn Reson Spectrosc 41:1–47

    Article  Google Scholar 

  • Baldus M (2006) Molecular interactions investigated by multi-dimensional solid-state NMR. Curr Opin Struct Biol 16:618–623

    Article  Google Scholar 

  • Baldus M, Meier BH (1996) Total correlation spectroscopy in the solid state. The use of scalar couplings to determine the through-bond connectivity. J Mag Res A 121:65–69

    Article  Google Scholar 

  • Barroso S, Richard F, Nicolas-Etheve D, Reversat JL, Bernassau JM, Kitabgi P, Labbe-Jullie C (2000) Identification of residues involved in neurotensin binding and modeling of the agonist binding site in neurotensin receptor 1. J Biol Chem 275:328–336

    Article  Google Scholar 

  • Bertoncini CW, Jung Y-S, Fernandez CO, Hoyer W, Griesinger C, Jovin TM, Zweckstetter M (2005) From the cover: release of long-range tertiary interactions potentiates aggregation of natively unstructured a-synuclein. Proc Natl Acad Sci USA 102:1430–1435

    Article  ADS  Google Scholar 

  • Blanco FJ, Tycko R (2001) Determination of polypeptide backbone dihedral angles in solid state NMR by double quantum C−13 chemical shift anisotropy measurements. J Mag Res 149:131–138

    Article  ADS  Google Scholar 

  • Böckmann A, Lange A, Galinier A, Luca S, Giraud N, Heise H, Juy M, Montserret R, Penin F, Baldus M (2003) Solid-state NMR sequential resonance assignments and conformational analysis of the 2*10.4 kDa dimeric form of the bacillus subtilis protein crh. J Biomol NMR 27:323–339

    Article  Google Scholar 

  • Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102

    Article  ADS  Google Scholar 

  • Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298

    Article  Google Scholar 

  • Cavanagh J, Fairbrother WJ, Palmer AG, Skelton NJ (1996) Protein NMR spectroscopy, principles and practice. Academic, San Diego

    Google Scholar 

  • Chan JCC, Oyler NA, Yau WM, Tycko R (2005) Parallel beta-sheets and polar zippers in amyloid fibrils formed by residues 10–39 of the yeast prion protein Ure2p. Biochemistry 44:10669–10680

    Article  Google Scholar 

  • Chimon S, Ishii Y (2005) Capturing intermediate structures of Alzheimer’s Ab (1–40), by solid-state NMR spectroscopy. J Am Chem Soc 127:13472–13473

    Article  Google Scholar 

  • Conway KA, Harper JD, Lansbury PT (2000) Fibrils formed in vitro from a-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry 39:2552–2563

    Article  Google Scholar 

  • Cordero-Morales JF, Cuello LG, Zhao Y, Jogini V, Cortes DM, Roux B, Perozo E (2006) Molecular determinants of gating at the potassium-channel selectivity filter. Nat Struct Mol Biol 13:311–318

    Article  Google Scholar 

  • Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  Google Scholar 

  • Cortes DM, Cuello LG, Perozo E (2001) Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating. J Gen Physiol 117:165–180

    Article  Google Scholar 

  • Costa PR, Gross JD, Hong M, Griffin RG (1997) Solid-state NMR measurement of Psi in peptides: a NCCN 2Q- heteronuclear local field experiment. Chem Phys Lett 280:95–103

    Article  ADS  Google Scholar 

  • Coutant J, Curmi PA, Toma F, Monti JP (2007) NMR solution structure of neurotensin in membrane-mimetic environments: molecular basis for neurotensin receptor recognition. Biochemistry (in press)

  • Creemers AFL, Kiihne S, Bovee-Geurts PHM, DeGrip WJ, Lugtenburg J, de Groot HJM (2002) H−1 and C−13 MAS NMR evidence for pronounced ligand–protein interactions involving the ionone ring of the retinylidene chromophore in rhodopsin. Proc Natl Acad Sci USA 99:9101–9106

    Article  ADS  Google Scholar 

  • Creuzet F, McDermott A, Gebhard R, Vanderhoef K, Spijkerassink MB, Herzfeld J, Lugtenburg J, Levitt MH, Griffin RG (1991) Determination of membrane–protein structure by rotational resonance NMR—bacteriorhodopsin. Science 251:783–786

    Article  ADS  Google Scholar 

  • Cross TA, Opella SJ (1994) Solid-state NMR structural studies of peptides and proteins in membranes. Curr Opin Struct Biol 4:574–581

    Article  Google Scholar 

  • Cross TA, Frey MH, Opella SJ (1983) 15N spin exchange in a protein. J Am Chem Soc 105:7471–7473

    Article  Google Scholar 

  • Dobson CM (2002) Protein-misfolding diseases: getting out of shape. Nature 418:729–730

    Article  ADS  Google Scholar 

  • Doyle DA, Cabral JM, Pfuetzner RA, Kuo AL, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  ADS  Google Scholar 

  • Dyson HJ, Wright PE (2004) Unfolded proteins and protein folding studied by NMR. Chem Rev 104:3607–3622

    Article  Google Scholar 

  • Edman K, Royant A, Nollert P, Maxwell CA, Pebay-Peyroula E, Navarro J, Neutze R, Landau EM (2002) Early structural rearrangements in the photocycle of an integral membrane sensory receptor. Structure 10:473–482

    Article  Google Scholar 

  • Egorova-Zachernyuk TA, Hollander J, Fraser N, Gast P, Hoff AJ, Cogdell R, de Groot HJM, Baldus M (2001) Heteronuclear 2D-correlations in a uniformly [C−13, N−15] labeled membrane–protein complex at ultra-high magnetic fields. J Biomol NMR 19:243–253

    Article  Google Scholar 

  • Eilers M, Ying WW, Reeves PJ, Khorana HG, Smith SO (2002) Magic angle spinning nuclear magnetic resonance of isotopically labeled rhodopsin. Methods Enzymol 343:212–222

    Article  Google Scholar 

  • Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Clarendon, Oxford

    Google Scholar 

  • Etzkorn M, Bockmann A, Penin F, Riedel D, Baldus M (2007a) Characterization of folding intermediates of a domain-swapped protein by solid-state NMR spectroscopy. J Am Chem Soc 129:169–175

    Article  Google Scholar 

  • Etzkorn M, Martell S, Andronesi Ovidiu C, Seidel K, Engelhard M, Baldus M (2007b) Secondary structure, dynamics, and topology of a seven-helix receptor in native membranes, studied by solid-state NMR spectroscopy. Angewandte Chem Int 46:459–462

    Article  Google Scholar 

  • Feng X, Verdegem PJE, Lee YK, Sandstrom D, Eden M, BoveeGeurts P, deGrip WJ, Lugtenburg J, deGroot HJM, Levitt MH (1997) Direct determination of a molecular torsional angle in the membrane protein rhodopsin by solid-state NMR. J Am Chem Soc 119:6853–6857

    Article  Google Scholar 

  • Ferguson N, Becker J, Tidow H, Tremmel S, Sharpe TD, Krause G, Flinders J, Petrovich M, Berriman J, Oschkinat H, Fersht AR (2006) General structural motifs of amyloid protofilaments. Proc Natl Acad Sci USA 103:16248–16253

    Article  ADS  Google Scholar 

  • van Gammeren AJ, Hulsbergen FB, Hollander JG, de Groot HJM (2004) Biosynthetic site-specific C-13 labeling of the light-harvesting 2 protein complex: a model for solid state NMR structure determination of transmembrane proteins. J Biomol NMR 30:267–274

    Article  Google Scholar 

  • Glaubitz C, Watts A (1998) Magic angle-oriented sample spinning (MAOSS): a new approach toward biomembrane studies. J Mag Res 130:305–316

    Article  ADS  Google Scholar 

  • Goedert M (1989) Radioligand-binding assays for study of neurotensin receptors. Methods Enzymol 168:462–481

    Article  Google Scholar 

  • Gordeliy VI, Labahn J, Moukhametzianov R, Efremov R, Granzin J, Schlesinger R, Buldt G, Savopol T, Scheidig AJ, Klare JP, Engelhard M (2002) Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419:484–487

    Article  ADS  Google Scholar 

  • Griffin RG (1981) Solid state nuclear magnetic resonance of lipid bilayers. Methods Enzymol 72:108–174

    Article  Google Scholar 

  • Griffin RG (1998) Dipolar recoupling in MAS spectra of biological solids. Nat Struct Biol 5:508–512

    Article  Google Scholar 

  • Grisshammer R, Tucker J (2000) Expression in Escherichia coli and large-scale purification of a rat neurotensin receptor. In: Haga T, Bernstein G (eds) G protein coupled receptors. CRC, Boca Raton, pp 265–280

    Google Scholar 

  • de Groot HJM (2000) Solid-state NMR spectroscopy applied to membrane proteins. Curr Opin Struct Biol 10:593–600

    Article  Google Scholar 

  • Havlin RH, Tycko R (2005) Probing site-specific conformational distributions in protein folding with solid-state NMR. Proc Natl Acad Sci USA 102:3284–3289

    Article  ADS  Google Scholar 

  • Heise H, Hoyer W, Becker S, Andronesi OC, Riedel D, Baldus M (2005a) Molecular-level secondary structure, polymorphism, and dynamics of full-length {alpha}-synuclein fibrils studied by solid-state NMR. Proc Natl Acad Sci USA 102:15871–15876

    Article  ADS  Google Scholar 

  • Heise H, Luca S, de Groot BL, Grubmuller H, Baldus M (2005b) Probing conformational disorder in neurotensin by two-dimensional solid-state NMR and comparison to molecular dynamics simulations. Biophys J 89:2113–2120

    Article  Google Scholar 

  • Heise H, Seidel K, Etzkorn M, Becker S, Baldus M (2005c) 3D Spectroscopy for resonance assignment and structure elucidation of proteins under MAS: novel pulse schemes and sensitivity considerations. J Mag Res 173:64–74

    Article  ADS  Google Scholar 

  • Heise H, Hoyer W, Becker S, Seidel K, Baldus M (2007) Fibril topology of full-length a-synuclein probed by solid-state NMR spectroscopy (submitted)

  • Herzfeld J, Lansing JC (2002) Magnetic resonance studies of the bacteriorhodopsin pump cycle. Annu Rev Biophys Biomol Struct 31:73–95

    Article  Google Scholar 

  • Hiller M, Krabben L, Vinothkumar KR, Castellani F, van Rossum BJ, Kuhlbrandt W, Oschkinat H (2005) Solid-state magic-angle spinning NMR of outer-membrane protein G from Escherichia coli. Chembiochem 6:1679–1684

    Article  Google Scholar 

  • Hong M (2006) Oligomeric structure, dynamics, and orientation of membrane proteins from solid-state NMR. Structure 14:1731–1740

    Article  Google Scholar 

  • Hong M, Gross JD, Griffin RG (1997) Site-resolved determination of peptide torsion angle phi from the relative orientations of backbone N–H and C–H bonds by solid-state NMR. J Phys Chem B 101:5869–5874

    Article  Google Scholar 

  • Hughes CE, Baldus M (2005) Magic-angle-spinning solid-state NMR applied to polypeptides and proteins. Ann Rep NMR Spect 55:121–158

    Article  Google Scholar 

  • Inooka H, Ohtaki T, Kitahara O, Ikegami T, Endo S, Kitada C, Ogi K, Onda H, Fujino M, Shirakawa M (2001) Conformation of a peptide ligand bound to its G-protein coupled receptor. Nature Struct Bio 8:161–165

    Article  Google Scholar 

  • Ishii Y, Terao T, Kainosho M (1996) Relayed anisotropy correlation NMR: determination of dihedral angles in solids. Chem Phys Lett 256:133–140

    Article  ADS  Google Scholar 

  • Iwata K, Fujiwara T, Matsuki Y, Akutsu H, Takahashi S, Naiki H, Goto Y (2006) 3D structure of amyloid protofilaments of b2-microglobulin fragment probed by solid-state NMR. Proc Natl Acad Sci USA103:18119–18124

    Article  ADS  Google Scholar 

  • Jaroniec CP, Tounge BA, Herzfeld J, Griffin RG (2001) Frequency selective heteronuclear dipolar recoupling in rotating solids: Accurate C–13–N-15 distance measurements in uniformly C−13,N−15-labeled peptides. J Am Chem Soc 123:3507–3519

    Article  Google Scholar 

  • Jaroniec CP, MacPhee CE, Bajaj VS, McMahon MT, Dobson CM, Griffin RG (2004) High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci USA 101:711–716

    Article  ADS  Google Scholar 

  • Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Mei Ono A, Güntert P (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440:52–57

    Article  ADS  Google Scholar 

  • Klare JP, Gordeliy VI, Labahn J, Büldt G, Steinhoff H-J, Engelhard M (2004) The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer. FEBS Lett 564:219–224

    Article  Google Scholar 

  • Koradi R, Billeter M, Wuthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14:51–55

    Article  Google Scholar 

  • Krabben L, van Rossum BJ, Castellani F, Bocharov E, Schulga AA, Arseniev AS, Weise C, Hucho F, Oschkinata H (2004) Towards structure determination of neurotoxin II bound to nicotinic acetylcholine receptor: a solid-state NMR approach. FEBS Lett 564:319–324

    Article  Google Scholar 

  • Kumashiro KK, Schmidt-Rohr K, Murphy OJ, Ouellette KL, Cramer WA, Thompson LK (1998) A novel tool for probing membrane protein structure: solid-state NMR with proton spin diffusion and X-nucleus detection. J Am Chem Soc 120:5043–5051

    Article  Google Scholar 

  • Ladizhansky V, Jaroniec CP, Diehl A, Oschkinat H, Griffin RG (2003) Measurement of multiple psi torsion angles in uniformly C−13,N−15-labeled alpha-spectrin SH3 domain using 3D N-15-C-13-C-13-N-15 MAS dipolar-chemical shift correlation spectroscopy. J Am Chem Soc 125:6827–6833

    Article  Google Scholar 

  • Lange A, Luca S, Baldus M (2002) Structural constraints from proton-mediated rare-spin correlation spectroscopy in rotating solids. J Am Chem Soc 124:9704–9705

    Article  Google Scholar 

  • Lange A, Seidel K, Verdier L, Luca S, Baldus M (2003) Analysis of proton–proton transfer dynamics in rotating solids and their use for 3D structure determination. J Am Chem Soc 125:12640–12648

    Article  Google Scholar 

  • Lange A, Becker S, Seidel K, Giller K, Pongs O, Baldus M (2005) A concept for rapid protein-structure determination by solid-state NMR spectroscopy. Angew Chem Int Ed 44:2089–2092

    Article  Google Scholar 

  • Lange A, Giller K, Hornig S, Martin-Eauclaire M-F, Pongs O, Becker S, Baldus M (2006) Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440:959–962

    Article  ADS  Google Scholar 

  • Legros C, Pollmann V, Knaus HG, Farrell AM, Darbon H, Bougis PE, Martin-Eauclaire MF, Pongs O (2000) Grenerating a high affinity scorpion toxin receptor in KcsA- Kv1.3 chimeric potassium channels. J Biol Chem 275:16918–16924

    Article  Google Scholar 

  • Legros C, Schulze C, Garcia ML, Bougis PE, Martin-Eauclaire MF, Pongs O (2002) Engineering-specific pharmacological binding sites for peptidyl inhibitors of potassium channels into KcsA. Biochemistry 41:15369–15375

    Article  Google Scholar 

  • Lenaeus MJ, Vamvouka M, Focia PJ, Gross A (2005) Structural basis of TEA blockade in a model potassium channel. Nat Struct Mol Biol 12:454–459

    Article  Google Scholar 

  • Luca S, White JF, Sohal AK, Filippov DV, van Boom JH, Grisshammer R, Baldus M (2003) The conformation of neurotensin bound to its G protein-coupled receptor. Proc Natl Acad Sci USA 100:10706–10711

    Article  ADS  Google Scholar 

  • Luca S, Lange A, Heise H, Baldus M (2005) Investigation of ligand–receptor interactions by high-resolution solid-state NMR. Arch Pharm (Weinheim) 338:217–228

    Article  Google Scholar 

  • Luecke H, Schobert B, Lanyi JK, Spudich EN, Spudich JL (2001) Crystal structure of sensory rhodopsin II at 2.4 Angstroms: insights into color tuning and transducer interaction. Science 293:1499–1503

    Article  ADS  Google Scholar 

  • Makin OS, Atkins E, Sikorski P, Johansson J, Serpell LC (2005) Molecular basis for amyloid fibril formation and stability. Proc Natl Acad Sci USA 102:315–320

    Article  ADS  Google Scholar 

  • Marassi FM, Opella SJ (1998) NMR structural studies of membrane proteins. Curr Opin Struct Biol 8:640–648

    Article  Google Scholar 

  • McDermott AE (2004) Structural and dynamic studies of proteins by solid-state NMR spectroscopy: rapid movement forward. Curr Opin Struct Biol 14:554–561

    Article  Google Scholar 

  • McDowell LM, Schaefer J (1996) High-resolution NMR of biological solids. Curr Opin Struct Biol 6:624–629

    Article  Google Scholar 

  • Morris GA, Freeman R (1979) Enhancement of nuclear magnetic-resonance signals by polarization transfer. J Am Chem Soc 101:760–762

    Article  Google Scholar 

  • Moukhametzianov R, Klare JP, Efremov R, Baeken C, Gäppner A, Labahn Jr, Engelhard M, Büldt G, Gordeliy VI (2006) Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. Nature 440:115–119

    Article  ADS  Google Scholar 

  • Nelson R, Sawaya MR, Balbirnie M, Madsen AO, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-b spine of amyloid-like fibrils. Nature 435:773–778

    Article  ADS  Google Scholar 

  • Nomura K, Takegoshi K, Terao T, Uchida K, Kainosho M (1999) Determination of the complete structure of a uniformly labeled molecule by rotational resonance solid-state NMR in the tilted rotating frame. J Am Chem Soc 121:4064–4065

    Article  Google Scholar 

  • Opella SJ (1986) Protein dynamics by solid state nuclear magnetic resonance. Methods Enzymol 131:327–361

    Article  Google Scholar 

  • Opella SJ, Marassi FM (2004) Structure determination of membrane proteins by NMR spectroscopy. Chem Rev 104:3587–3606

    Article  Google Scholar 

  • Palmer AG, Williams J, McDermott A (1996) Nuclear magnetic resonance studies of biopolymer dynamics. J Phys Chem 100:13293–13310

    Article  Google Scholar 

  • Patel AB, Crocker E, Eilers M, Hirshfeld A, Sheves M, Smith SO (2004) Coupling of retinal isomerization to the activation of rhodopsin. Proc Natl Acad Sci USA 101:10048–10053

    Article  ADS  Google Scholar 

  • Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) A structural model for Alzheimer’s b-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 99:16742–16747

    Article  ADS  Google Scholar 

  • Petkova AT, Buntkowsky G, Dyda F, Leapman RD, Yau WM, Tycko R (2004) Solid state NMR reveals a pH-dependent antiparallel b-sheet registry in fibrils formed by a b-amyloid peptide. J Mol Biol 335:247–260

    Article  Google Scholar 

  • Petkova AT, Leapman RD, Guo Z, Yau W-M, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s b-amyloid fibrils. Science 307:262–265

    Article  ADS  Google Scholar 

  • Petkova AT, Yau WM, Tycko R (2006) Experimental constraints on quaternary structure in Alzheimer’s b-amyloid fibrils. Biochemistry 45:498–512

    Article  Google Scholar 

  • Reif B, Hohwy M, Jaroniec CP, Rienstra CM, Griffin RG (2000) NH–NH vector correlation in peptides by solid-state NMR. J Mag Res 145:132–141

    Article  ADS  Google Scholar 

  • Rienstra CM, Hohwy M, Mueller LJ, Jaroniec CP, Reif B, Griffin RG (2002) Determination of multiple torsion-angle constraints in U-C- 13,N-15-labeled peptides: 3D H-1-N-15-C-13-H-1 dipolar chemical shift NMR spectroscopy in rotating solids. J Am Chem Soc 124:11908–11922

    Article  Google Scholar 

  • Ritter C, Maddelein M-L, Siemer AB, Lührs T, Ernst M, Meier BH, Saupe SJ, Riek R (2005) Correlation of structural elements and infectivity of the HET-s prion. Nature 435:844–848

    Article  ADS  Google Scholar 

  • Royant A, Nollert P, Edman K, Neutze R, Landau EM, Pebay-Peyroula E, Navarro J (2001) X-ray structure of sensory rhodopsin II at 2.1-A resolution. Proc Natl Acad Sci USA 98:10131–10136

    Article  ADS  Google Scholar 

  • Schneider R, Etzkorn M, Baldus M (2007) Molecular motion detected by double-quantum (13C,13C) solid-state NMR spectroscopy (submitted)

  • Schrempf H, Schmidt O, Kummerlen R, Hinnah S, Muller D, Betzler M, Steinkamp T, Wagner R (1995) A prokaryotic potassium-ion channel with 2 predicted transmembrane segments from Streptomyces lividans. EMBO J 14:5170–5178

    Google Scholar 

  • Seidel K, Lange A, Becker S, Hughes CE, Heise H, Baldus M (2004) Protein solid-state NMR resonance assignments from (13C,13C) correlation spectroscopy. PhysChemChemPhys 6:5090–5093

    Google Scholar 

  • Seidel K, Etzkorn M, Sonnenberg L, Griesinger C, Sebald A, Baldus M (2005) Studying 3D structure and dynamics by high-resolution solid-state NMR: application to l-tyrosine–ethylester. J Phys Chem A 109:2436–2442

    Article  Google Scholar 

  • Serpell LC, Berriman J, Jakes R, Goedert M, Crowther RA (2000) Fiber diffraction of synthetic a-synuclein filaments shows amyloid-like cross-b conformation. Proc Natl Acad Sci USA 97:4897–4902

    Article  ADS  Google Scholar 

  • Shewmaker F, Wickner RB, Tycko R (2006) Amyloid of the prion domain of Sup35p has an in-register parallel b-sheet structure. Proc Natl Acad Sci USA 103:19754–19759

    Article  ADS  Google Scholar 

  • Siemer AB, Arnold AA, Ritter C, Westfeld T, Ernst M, Riek R, Meier BH (2006) Observation of highly flexible residues in amyloid fibrils of the HET-s prion. J Am Chem Soc 128:13224–13228

    Article  Google Scholar 

  • Sizun C, Bechinger B (2002) Bilayer sample for fast or slow magic angle oriented sample spinning solid-state NMR spectroscopy. J Am Chem Soc 124:1146–1147

    Article  Google Scholar 

  • Sonnenberg L, Luca S, Baldus M (2004) Multiple-spin analysis of (13C,13C) chemical-shift selective transfer in uniformly labeled biomolecules. J Mag Res 166:100–110

    Article  ADS  Google Scholar 

  • Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CCF (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273:729–739

    Article  Google Scholar 

  • Tanaka K, Masu M, Nakanishi S (1990) Structure and functional expression of the cloned rat neurotensin receptor. Neuron 4:847–854

    Article  Google Scholar 

  • Torchia DA (1984) Solid-state NMR-studies of protein internal dynamics. Annu Rev Biophys Bioeng 13:125–144

    Article  Google Scholar 

  • Tycko R (2004) Progress towards a molecular-level structural understanding of amyloid fibrils. Curr Opin Struct Biol 14:96–103

    Article  Google Scholar 

  • Tycko R (2006) Molecular Structure of amyloid fibrils: insights from solid-state NMR. Quart Rev Biophys 39:1–55

    Article  Google Scholar 

  • vanderWel PCA, Hu KN, Lewandowski J, Griffin RG (2006) Dynamic nuclear polarization of amyloidogenic peptide nanocrystals: GNNQQNY, a core segment of the yeast prion protein Sup35p. J Am Chem Soc 128:10840–10846

    Article  Google Scholar 

  • Vuister GW, Kim SJ, Wu C, Bax A (1994) 2d and 3d NMR-study of phenylalanine residues in proteins by reverse isotopic labeling. J Am Chem Soc 116:9206–9210

    Article  Google Scholar 

  • Watts A (1999) NMR of drugs and ligands bound to membrane receptors. Curr Opin Biotechnol 10:48–53

    Article  Google Scholar 

  • Watts A (2005) Solid-state NMR in drug design and discovery for membrane-embedded targets. Nature Rev Drug Disc 4:555–568

    Article  Google Scholar 

  • Weinreb PH, Zhen WG, Poon AW, Conway KA, Lansbury PT (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35:13709–13715

    Article  Google Scholar 

  • Williamson PTF, Bains S, Chung C, Cooke R, Watts A (2002) Probing the environment of neurotensin whilst bound to the neurotensin receptor by solid-state NMR. FEBS Lett 518:111–115

    Article  Google Scholar 

  • Wishart DS, Sykes BD (1994) Chemical-shifts as a tool for structure determination. Nucl Magn Reson Pt C 239:363–392

    Article  Google Scholar 

  • Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley Interscience, New York

    Google Scholar 

  • Yi H, Cao ZJ, Yin SJ, Dai C, Wu YL, Li WX (2007) Interaction simulation of hERG K+ channel with its specific BeKm−1 peptide: insights into the selectivity of molecular recognition. J Prot Res 6:611–620

    Article  Google Scholar 

  • Zhou M, Morais-Cabral JH, Mann S, MacKinnon R (2001a) Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 411:657–661

    Article  ADS  Google Scholar 

  • Zhou YF, Morais-Cabral JH, Kaufman A, MacKinnon R (2001b) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Angstrom resolution. Nature 414:43–48

    Article  ADS  Google Scholar 

  • Zhou Y, MacKinnon R (2003) The occupancy of ions in the K+ selectivity filter: charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J Mol Biol 333:965–975

    Article  Google Scholar 

Download references

Acknowledgments

Work described in this review was supported through grants from the DFG, the FCI, the Volkswagen foundation and the Humboldt foundation, the EU and the Max-Planck Gesellschaft. I thank members of my group and our collaborators over the past 7 years who substantially contributed to work described here. Continuous support by C. Griesinger is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Baldus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldus, M. Magnetic resonance in the solid state: applications to protein folding, amyloid fibrils and membrane proteins. Eur Biophys J 36 (Suppl 1), 37–48 (2007). https://doi.org/10.1007/s00249-007-0174-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-007-0174-y

Keywords

Navigation