Skip to main content
Log in

Biophysical effects of electric fields on membrane water interfaces: a mini review

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Lipid–water interfaces are dielectric transition regions. Their local organizations are highly sophisticated. They are sensitive to electric field with dramatic consequences on the global membrane organization and function. The importance of using local values of parameters (e.g. dielectric constant) near water–solution interface due to hydration and different electrostatic effects is often neglected in the description of cellular functions. Structural changes in the lipid layer are induced by minute changes in the electric properties of the interface. They bring alterations in the structure and oligomerization of membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Astumian RD, Weaver JC, Adair RK (1995) Rectification and signal averaging of weak electric fields by biological cells. Proc Natl Acad Sci USA 92:3740–3743

    Article  ADS  Google Scholar 

  • Bin X, Lipkowski J (2006) Electrochemical and PM-IRRAS studies of the effect of cholesterol on the structure of a DMPC bilayer supported at a Au (111) electrode surface: part 2, properties of the head group region. J Phys Chem B 110:26430–26441

    Article  Google Scholar 

  • Bin X, Horswell SL, Lipkowski J (2005a) Electrochemical a and PM-IRRAS studies of the effect of cholesterol on the structure of a DMPC bilayer supported at a Au (111) electrode surface: part 1, properties of the acyl chains. Biophysical J 89:592–604

    Article  ADS  Google Scholar 

  • Bin X, Zawisza I, Goddard JD, Lipkowski J (2005b) Electrochemical and PM-IRRAS studies of the effect of the static electric field on the structure of DMPC bilayer supported at a Au (111) electrode surface. Langmuir 21:330–347

    Article  Google Scholar 

  • Brockmann H (1994) Dipole potential in lipid membranes. Chem Phys Lipids 73:57–79

    Article  Google Scholar 

  • Burgess I, Li M, Horswell SL, Szymanski G, Lipkowski J, Majewski J, Satija S (2004) Electric field-driven transformations of a supported model biological membrane: an electrochemical and neutron reflectivity study. Biophys J 86:1763–1776

    Google Scholar 

  • Burgess I, Li M, Horswell SL, Szymanski G, Lipkowski J, Satija S, Majewski J (2005) Influence of the electric field on a bio-mimetic film supported on a gold electrode. Colloids Surf B Biointerfaces 40:117–122

    Article  Google Scholar 

  • Cantor RS (1999) The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. Chem Phys Lipids 101:45–56

    Article  Google Scholar 

  • Cherepanov DA, Feniouk B, Junge W, Mulkidjanian AY (2003) Low dielectric permitivity of water at the membrane interface: effect on the energy coupling mechanism in biological membrane. Biophys J 85:1307–1318

    Google Scholar 

  • Cladera J, O’Shea PS (1998) Intra-membrane molecular dipoles affect the membrane insertion and folding of a model amphiphilic peptide. Biophys J 74:2434–2442

    Google Scholar 

  • Garcia-Araez N, Brosseau CL, Rodriguez P, Lipkowski J (2006) Layer by layer PM-IRRAS characterization of DMPC bilayers deposited on Au(111) electrode. Langmuir 22:10365–10371

    Article  Google Scholar 

  • Groves JT, Boxer SG (1995) Electric field-induced concentration gradients in planar supported bilayers. Biophys J 69:1972–1975

    Google Scholar 

  • Groves JT, Wulfing C, Boxer SG (1996) Electrical manipulation of glycan-phosphatidyl inositol-tethered proteins in planar supported bilayers. Biophys J 71:2716–2723

    Google Scholar 

  • Groves JT, Boxer SG, McConnell HM (1998) Electric field-induced critical demixing in lipid bilayer membranes. Proc Natl Acad Sci USA 95:935–938

    Article  ADS  Google Scholar 

  • Groves JT, Boxer SG, McConnell HM (2000) Lateral reorganization of fluid lipid membranes in response to the electric field produced by a buried charge. J Phys Chem B 104:11409–11415

    Article  Google Scholar 

  • Israelachvilli JN, Marcelja S, Horn RG (1980) Physical principles of membrane organization. Q Rev Biophys 13:121–200

    Google Scholar 

  • Israelachvili J (1992) Special interactions: hydrogen bonding, hydrophobic and hydrophilic interactions in Intermolecular and surface forces. Academic, San Diego, pp 122–136

  • Kotulska M, Kubica K, Koronkiewicz S, Kalinowski S (2007) Modeling the induction of lipid membrane electropermeabilization. Bioelectrochemistry 70:64–70

    Article  Google Scholar 

  • Le Saux A, Ruysschaert JM, Goormaghtigh E (2001) Membrane molecule reorientation in an electric field recorded by attenuated total reflection Fourier-transform infrared spectroscopy. Biophys J 80:324–330

    Google Scholar 

  • Lee KY, McConnell HM (1995) Effect of electric field gradients on lipid monolayer membranes. Biophys J 68:1740–1751

    Google Scholar 

  • Lee KY, Klingler JF, McConnell HM (1994) Electric field-induced concentration gradients in lipid monolayers Science 263:655–658

    Article  ADS  Google Scholar 

  • Lundbaek JA, Maer AM, Andersen OS (1997) Lipid bilayer electrostatic energy, curvature stress, and assembly of gramicidin channels. Biochemistry 36:5695–5701

    Article  Google Scholar 

  • Miller IR (2002) Effects of electric fields on the structure of phosphatidylcholine in a multibilayer system. Bioelectrochemistry 57:145–148

    Article  Google Scholar 

  • Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290

    Article  Google Scholar 

  • O’Shea P (2004) Membrane potential: measurements, occurrence and role in cellular functions in Bioelectrochemistry of membranes, Ed Walz D., Teissié J. Milazzo G., Birkhauser, Basel, pp 23–60

  • Osman P, Cornell B (1994) The effect of pulsed electric fields on the phosphorus-31 spectra of lipid bilayers. Biochim Biophys Acta 1195:197–204

    Article  Google Scholar 

  • Poo M, Robinson KR (1977) Electrophoresis of concanavalin: a receptors along embryonic muscle cell membrane. Nature 265:602–605

    Google Scholar 

  • Posson DJ, Ge P, Miller C, Bezanilla F, Selvin PR (2005) Small vertical movement of a K+ channel voltage sensor measured with luminescence energy transfer. Nature 436:848–851

    Article  ADS  Google Scholar 

  • Prats M, Teissié J, Tocanne JF (1986) Lateral proton conduction at lipid-water interfaces and its implications for the chemiosmotic-coupling hypothesis. Nature 322:756–758

    Article  ADS  Google Scholar 

  • Radhakrishnan A, McConnell HM (2000) Electric field effect on cholesterol–phospholipid complexes. Proc Natl Acad Sci USA 97:1073–1078

    Article  ADS  Google Scholar 

  • Robello M, Gliozzi A (1989) Conductance transition induced by an electric field in lipid bilayers. Biochim Biophys Acta 982:173–176

    Article  Google Scholar 

  • Scherer PG, Seelig J (1989) Electric charge effects on phospholipid headgroups: phosphatidylcholine in mixtures with cationic and anionic amphiphiles. Biochemistry 28:7720–7728

    Article  Google Scholar 

  • Schmeer M, Seipp T, Pliquett U, Kakorin S, Neumann E (2004) Mechanisms for the conductivity changes caused by membrane electroporation of CHO cells pellets. Phys Chem Chem Phys 6:5564–5574

    Article  Google Scholar 

  • Schwarzott M, Lasch P, Baurecht D, Naumann D, Fringeli UP (2004) Electric field-induced changes in lipids investigated by modulated excitation FTIR spectroscopy. Biophys J 86:285–295

    Google Scholar 

  • Seelig J, Macdonald PM, Scherer PG (1987) Phospholipid head groups as sensors of electric charge in membranes. Biochemistry 26:7535–7541

    Article  Google Scholar 

  • Stulen G (1981). Electric field effects on lipid membrane structure. Biochim. Biophys. Acta 640:621–627

    Article  Google Scholar 

  • Tekle E, Astumian RD, Friauf WA, Chock PB (2001) Asymmetric pore distribution and loss of membrane lipid in electroporated DOPC vesicles. Biophys J 81:960–968

    Google Scholar 

  • Teschke O, Ceotto G, De Souza EF (2001) Interfacial water permittivity profile measurements using atomic force microscopy. Phys Rev E 64:11605

    Article  ADS  Google Scholar 

  • Tsong TY (1992) Molecular recognition and processing of periodic signals in cells: study of activation of membrane ATPases by alternating electric fields. Biochim Biophys Acta 1113:53–70

    Google Scholar 

  • Van den Brink-Van der Laan E, Killian JA, De Kruijff B (2004) Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim Biophys Acta 1666:275–288

    Article  Google Scholar 

  • Weaver JC, Astumian RD (1990) The response of living cells to very weak electric fields: the thermal noise limit. Science 247:459–462

    Article  ADS  Google Scholar 

  • Xie TD, Marszalek P, Chen YD, Tsong TY (1994) Recognition and processing of randomly fluctuating electric signals by Na, K-ATPase. Biophys J 67:1247–1251

    Google Scholar 

  • Zasadzinski JA (1996) Round-up at the bilayer corral. Biophys J 71:2243–2244

    Article  Google Scholar 

  • Zawisza I, Bin X, Lipkowski J. (2007) Potential-driven structural changes in Langmuir-Blodgett DMPC bilayers determined by in situ spectroelectrochemical PM IRRAS. Langmuir. [Epub ahead of print]

Download references

Acknowledgments

This work was supported by grants from the Association française contre les Myopathies (AFM), of the region Midi Pyrenees and from the French Minister for Research (ACI “Effets sanitaires des radiotelephones”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Teissie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teissie, J. Biophysical effects of electric fields on membrane water interfaces: a mini review. Eur Biophys J 36, 967–972 (2007). https://doi.org/10.1007/s00249-007-0168-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-007-0168-9

Keywords

Navigation