Skip to main content
Log in

Monte Carlo simulations of tBid association with the mitochondrial outer membrane

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Bid, a BH3-only pro-apoptopic member of the BCL-2 protein family, regulates cell death at the level of mitochondrial cytochrome c efflux. Bid consists of 8 α-helices (H1–H8, respectively) and is soluble cytosolic protein in its native state. Proteolysis of the N-terminus (encompassing H1 and H2) of Bid by caspase 8 in apoptosis yields activated “tBid” (truncated Bid), which translocates to the mitochondria and induces the efflux of cytochrome c. The release of cytochrome c from mitochondria to the cytosol constitutes a critical control point in apoptosis that is regulated by interaction of tBid protein with mitochondrial membrane. tBid displays structural homology to channel-forming bacterial toxins, such as colicins or transmembrane domain of diphtheria toxin. By analogy, it has been hypothesized that tBid would unfold and insert into the lipid bilayer of the mitochondria outer membrane (MOM) upon membrane association. However, it has been shown recently that unlike colicins and the transmembrane domain of diphtheria toxin, tBid binds to the lipid bilayer maintaining α-helical conformation of its helices without adopting a transmembrane orientation by them. Here, the mechanism of the association of tBid with the model membrane mimicking the mitochondrial membrane is studied by Monte Carlo simulations, taking into account the underlying energetics. A novel two-stage hierarchical simulation protocol combining coarse-grained discretization of conformational space with subsequent refinements was applied which was able to generate the protein conformation and its location in the membrane using modest computational resources. The simulations show that starting from NMR-established conformation in the solution, the protein associates with the membrane without adopting the transmembrane orientation. The configuration (conformation and location) of tBid providing the lowest free energy for the system protein/membrane/solvent has been obtained. The simulations reveal that tBid upon association with the membrane undergoes significant conformational changes primarily due to rotations within the loops between helices H4 and H5, H6 and H7, H7 and H8. It is established that in the membrane-bound state of tBid-monomer helices H3 and H5 have the locations exposed to the solution, helices H6 and H8 are partly buried and helices H4 and H7 are buried into the membrane at shallow depth. The average orientation of tBid bound to the membrane in the most stable configuration reported here is in satisfactory agreement with the evaluations obtained by indirect experimental means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams JM (2003) Ways of dying: multiple pathways of apoptosis. Genes Dev 172:2481–2495

    Google Scholar 

  • Allen MP, Tildesley DJ (1987) Computer simulations of liquids. Oxford, Clarendon

    Google Scholar 

  • Annis MG, Soucie EL, Dlugosz PJ, Cruz-Aguado JC, Penn LZ, Leber B, Andrews DW (2005) Bax forms multispanning monomers that oligomerize to permeabilize membranes during apoptosis. EMBO J 24:2096–2103

    Google Scholar 

  • Antonsson B, Montessuit S, Lauper S, Eskes R, Martinou JC (2000) Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J 345:271–278

    Google Scholar 

  • Ardail D, Privat J-P, Egret-Charlier M, Levrat C, Lerme F, Louisot P (1990) Mitochondrial contact sites. Lipid composition and dynamics. J Biol Chem 265:18797–18802

    Google Scholar 

  • Ash WL, Zlomislic MR, Oloo EQ, Tieleman DP (2004) Computer simulations of membrane proteins. Biochim Biophys Acta 1666:158–189

    Google Scholar 

  • Basanez G, Sharpe JC, Galanis J, Brandt TB, Hardwick JM, Zimmerberg J (2002) Bax-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J Biol Chem 277:49360–49365

    Google Scholar 

  • Baumgartner A (1996) Insertion and hairpin formation of membrane proteins: a Monte Carlo study. Biophys J 71:1248–1255

    Google Scholar 

  • Belzacq AS, Vieira HL, Verrier F, Vandescasteele G, Cohen I, Prevost MC, Larquet E, Pariselli F, Petit PX, Kahn A, Rizzutto R, Brenner C, Kroemer C (2003) Bcl-2 and Bax modulate adenine nucleotides translocase activity. Cancer Res 63:541–546

    Google Scholar 

  • Benz R, Kottke M, Brdiczka D (1990) The cationically selective state of the mitochondrial outer membrane pore: a study with intact mitochondria and reconstituted mitochondrial porin. Biochim Biophys Acta 1022:311–318

    Google Scholar 

  • Bond PJ, Sansom MS (2004) The simulation approach to bacterial outer membrane proteins. Mol Membr Biol 21:151–161

    Google Scholar 

  • Bond PJ, Sansom MS (2006) Insertion and assembly of membrane protein via simulation. J Am Chem Soc 128:2697–2704

    Google Scholar 

  • Bychkova VE, Dujsekina AE, Klenin SI, Tiktopulo EI, Uversky VN, Ptitsyn OB (1996) Molten globule like state of cytochrome c under conditions simulating those near the membrane surface. Biochemistry 35:6058–6063

    Google Scholar 

  • Chenal A, Savarin P, Nizard P, Guillain F, Gillet D, Forge V (2002) Membrane protein insertion regulated by bringing electrostatic and hydrophobic interactions into play. A case study with the translocation domain of diphtheria toxin. J Biol Chem 277:43425–43432

    Google Scholar 

  • Choe S, Bennett MJ, Fujii G, Curmi PM, Kantardjieff KA, Collier RJ, Eisenberg D (1992) The crystal structure of diphtheria toxin. Nature 357:216–222

    ADS  Google Scholar 

  • Chou J, Li H, Salvesen G, Yuan J, Wagner G (1999) Solution structure of Bid, an intracellular amplifier of apoptopic signaling. Cell 96:615–624

    Google Scholar 

  • Chang G, Guida WC, Still WC (1989) An internal coordinate Monte-Carlo method for searching conformational space. J Am Chem Soc 111:4379–4386

    Google Scholar 

  • Cory S, Huang DC, Adams JM (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22:8590–8607

    Google Scholar 

  • Cramer WA, Heimann JB, Shendel SL, Deriy BN, Cohen FS, Etkins PA, Stauffacher CV (1995) Structure-function of the channel-forming colicins. Annu Rev Biophys Biomol Struct 24:611–641

    Google Scholar 

  • Daniel NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Google Scholar 

  • Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B, Martinou JC (1999) Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144:891–901

    Google Scholar 

  • Ducarme P, Rahman M, Brasseur R (1998) IMPALA: a simple restraint field to simulate the biological membranes in molecular structure studies. Proteins 30:357–371

    Google Scholar 

  • Dunfield LG, Burgess AW, Scheraga HA (1978) Energy parameters in polypeptides. 8. Empirical potential energy algorithm for the conformational analysis of large molecules. J Phys Chem 82:2609–2616

    Google Scholar 

  • Efremov RG, Nolde DE, Vergoten G, Arseniev AS (1999a) A solvent model for simulations of peptides in bilayers. I. Membrane-promoting α-helix formation. Biophys J 76:2448–2459

    Google Scholar 

  • Efremov RG, Nolde DE, Vergoten G, Arseniev AS (1999b) A solvent model for simulations of peptides in bilayers. II. Membrane-spanning α-helices. Biophys J 76:2460–2471

    Google Scholar 

  • Efremov RG, Volynsky PE, Nolde DE, Dubovskii PV, Arseniev AS (2002) Interaction of cardiotoxins with membranes: a molecular modeling study. Biophys J 83:144–153

    Google Scholar 

  • Epand RM, Vogel HJ (1999) Diversity of antimicrobial peptides and their mechanisms of ac tion. Biochim Biophys Acta 1462:11–28

    Google Scholar 

  • Epand RF, Martinou J-C, Fornallaz-Mulhauser M, Hughes DW, Epand RM (2002a) The apoptotic protein tBid promotes leakage by altering membrane curvature. J Biol Chem 277:32632–32639

    Google Scholar 

  • Epand RF, Martinou J-C, Montessuit S, Epand RM, Yip CM (2002b) Direct evidence for membrane pore formation by the apoptotic protein Bax. Biochem Biophys Res Commun 298:744–749

    Google Scholar 

  • Eskes R, Desagher S, Antonsson B, Martinou J-C (2000) Bid induces the oligomerization and insertion of BAX into the outer mitochondrial membrane. Mol Cell Biol 20:929–935

    Google Scholar 

  • Forsten KE, Kosack RE, Lauffenburger DA, Subramanian (1994) Numerical solution of nonlinear Poisson–Boltzmann equation for a membrane electrolyte system. J Phys Chem 98:5580–5586

    Google Scholar 

  • Fraczkiewicz R, Braun W (1998) Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J Comp Chem 19:319–333

    Google Scholar 

  • Franzin CM, Choi J, Zhai J, Reed D, Marassi FM (2004) Structural studies of apoptosis and ion transport regulatory proteins in membranes. Magn Reson Chem 42:172–179

    Google Scholar 

  • Garcia-Saez AJ, Mingarro I, Perez-Paya E, Salgado J (2004) Membrane-insertion fragments of Bcl-XL, Bax, and Bid. Biochemistry 43:10930–10943

    Google Scholar 

  • Garcia-Saez A, Coraiola M, Dalla Serra M, Mingarro I, Muller P, Salgado J (2006) Peptides corresponding to helices 5 and 6 of BAX can independently form lipid pores. FEBS J 273:971–981

    Google Scholar 

  • Gong X-M, Choi J, Franzin CM, Zhai D, Reed JC, Marassi FM (2004) Conformation of membrane-associated proapoptopic tBid. J Biol Chem 279:28954–28960

    Google Scholar 

  • Grinberg M, Sarig R, Zaltsman Y, Frumkin D, Grammatikakis N, Reuveny E, Gross A (2002) tBID homooligomerizes in the mitochondrial membrane to induce apoptosis. J Biol Chem 277:12237–12245

    Google Scholar 

  • Gross A, McDonnel JM, Korsemeyer SJ (1999a) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    Google Scholar 

  • Gross A, Yin XM, Wang K, Wei MC, Jockel J, Milliman C, Erdjument-Bromage H, Tempst P, Korsemeyer SJ (1999b) Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor R1/FAS death. J Biol Chem 274:1156–1163

    Google Scholar 

  • Gumbart J, Wang Y, Aksimentiev A, Tajkhotshid E, Schulten K (2005) Molecular dynamics simulations of proteins in lipid bilayers. Curr Opin Struct Biol 15:423–431

    Google Scholar 

  • Holm L, Park J (2000) DaliLite workbench for protein structure comparison. Bioinformatics 16:566–567

    Google Scholar 

  • Huang HW, Chen FY, Lee MT (2004) Molecular mechanism of peptide-induced pores in membranes. Phys Rev Lett 92:198304

    ADS  Google Scholar 

  • Huang HW (2006) Molecular mechanism of antimicrobial peptides. The origin of cooperativity. Biochim Biophys Acta 1758:1292–1302

    Google Scholar 

  • Kessel A, Shental-Bechor D, Haliloglu T, Ben-Tal N (2003) Interaction of hydrophobic peptides with lipid bilayers: Monte Carlo simulations with M2δ. Biophys J 85:3431–3444

    Google Scholar 

  • Kim TH, Zhao Y, Ding WX, Shin JN, He X, Seo YW, Chen J, Rabinowich H, Amoscato AA, Yin XM (2004) Bid-cardiolipin interaction at Mitochondrial contact site contributes to mitochondrial cristae reorganization and cytochrome c release. Mol Biol Cell 15:3061–3072

    Google Scholar 

  • Kirkpatrick S, Gelati CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    ADS  MathSciNet  Google Scholar 

  • Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH (2000) Pro-apoptopic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7:1166–1173

    Google Scholar 

  • Kudla G, Montessuit S, Eskes R, Berrier C, Martinou JC, Gazi A, Antonsson B (2000) The destabilization of lipid membranes induced by the C-terminal fragment of caspase 8-cleaved bid is inhibited by the N-terminal fragment. J Biol Chem 275:22713–22718

    Google Scholar 

  • Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, Green DR, Newmeyer DD (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331–342

    Google Scholar 

  • Lazaridis T (2005) Implicit solvent simulations of peptide interactions with anionic lipid membranes. Proteins 58:518–527

    Google Scholar 

  • Lesieur C, Vecsey-Semjen B, Abrami L, Fivaz M, van der Goot FG (1997) Membrane insertion: the strategies of toxins. Mol Membr Biol 14:45–64

    Article  Google Scholar 

  • Lee J, Scheraga HA, Rackovsky S (1997) New optimization method for conformational energy calculations on polypeptides: conformational space annealing. J Comput Chem 18:1222–1232

    Google Scholar 

  • Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2:183–192

    Google Scholar 

  • Li Z, Scheraga HA (1987) Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc Natl Acad Sci USA 84:6611–6615

    ADS  MathSciNet  Google Scholar 

  • Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of Bid by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    Google Scholar 

  • London E (1992) Diphtheria toxins: membrane interaction and membrane translocation. Biochim Biophys Acta 1113:25–51

    Google Scholar 

  • Lu JX, Damodaran K, Blazyk J, Lorigan GA (2005) Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Biochemistry 44:10208–10217

    Google Scholar 

  • Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl-2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490

    Google Scholar 

  • Lutter M, Fang M, Lun X, Nishijima M, Xie M, Wang X (2000) Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat Cell Biol 2:754–761

    Google Scholar 

  • Maddox MW, Longo ML (2002) A Monte Carlo study of peptide insertion into lipid bilayers: equilibrium conformations and insertion mechanisms. Biophys J 82:244–263

    Google Scholar 

  • Matsuzaki K (1999) Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tacheplysins as archetypes. Biochim Biophys Acta 1452:1–10

    Google Scholar 

  • Mau NV, Kajava AV, Bonfils C, Martinou J-C, Harricane M-C (2006) Interactions of Bax and tBid with lipid monolayers. J Membr Biol 207:1–9

    Google Scholar 

  • McDonnel J, Fushman D, Milliman C, Korsmeyer S, Cowburn D (1999) Solution structure of the proapoptopic molecule BID: a structural basis for apoptopic agonists and antagonists. Cell 96:625–634

    Google Scholar 

  • McLaughlin S (1989) The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem 18:113–136

    Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller EJ (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    ADS  Google Scholar 

  • Milik M, Skolnick J (1993) Insertion of peptide chains into lipid membranes: an off-lattice Monte Carlo dynamics model. Proteins 15:10–25

    Google Scholar 

  • Milik M, Skolnick J (1995) Monte Carlo model of FD and PF1 coat proteins in lipid membranes. Biophys J 69:1382–1386

    Google Scholar 

  • Muchmore SW, Sattler M, Liang H, Meadows RP, Harian JE, Yoon JE, Nettesheim D, Chang BS, Thompson CB, Wong SL, Ng SL, Fesic SW (1996) X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381:335–341

    ADS  Google Scholar 

  • Mungikar AA, Forciniti D (2004) Conformational changes of peptides at solid/liquid interfaces: a Monte Carlo study. Biomacromolecules 5:2147–2159

    Google Scholar 

  • Nam GH, Choi KY (2002) Association of human tumor necrosis factor-related apoptosis inducing ligand with membrane upon acidification. Eur J Biochem 269:5280–5287

    Google Scholar 

  • Nelson AP, Colonomos P, McQuarrie DA (1975) Electrostatic coupling across a membrane with titratable surface groups. J Theor Biol 50:317–325

    Google Scholar 

  • Némethy G, Pottle MS, Scheraga HA (1983) Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occurring amino acids. J Phys Chem 87:1883–1887

    Google Scholar 

  • Némethy G, Gibson KD, Palmer KA, Yoon CN, Paterlini G, Zagari A, Rumsey S, Scheraga HA (1992) Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in ECEPP/3 algorithm with application to proline-containing peptides J Phys Chem 96:6472–6484

    Google Scholar 

  • Oh KJ, Barbuto S, Meyer N, Kim R-S, Collier RJ, Korsmeyer SJ (2005) Conformational changes in BID, a pro-apoptopic BCL-2 family member, upon membrane binding. J Biol Chem 280:753–767

    Google Scholar 

  • Opferman JT, Korsmeyer SJ (2003) Apoptosis in the development and maintenance of the immune system. Nat Immunol 4:410–415

    Google Scholar 

  • Oshima H, Kondo T (1988) Membrane potential and Donnan potential. Biophys Chem 29:277–281

    Google Scholar 

  • Ozkan SB, Meirovitch H (2004) Conformational search of peptides and proteins: Monte Carlo minimization with an adaptive bias method applied to the heptapeptide deltorphin. J Comput Chem 25:565–572

    Google Scholar 

  • Peitzsch RM, Eisenberg M, Sharp KA, McLaughlin S (1995) Calculations of the electrostatic potential adjacent to model phospholipid bilayers. Biophys J 68:729–738

    Google Scholar 

  • Petros AM, Oleiniczak ET, Fesik SW (2004) Structural biology of the Bcl-2 family of proteins. Biochim Biophys Acta 1644:83–94

    Google Scholar 

  • Pillardy J, Czaplewski C, Wedemeyer WJ, Scheraga HA (2000) Conformation-family Monte Carlo (CFMC): an efficient computational method for identifying the low-energy states of a macromolecule. Helv Chim Acta 83:2214–2230

    Google Scholar 

  • Pillardy J, Arnautova YA, Czaplewski C, Gibson KD, Scheraga HA (2001) Conformation-family Monte Carlo: a new method for crystal structure prediction. Proc Natl Acad Sci USA 98:12351–12356

    ADS  Google Scholar 

  • Rosconi MP, Zhao G, London E (2004) Analyzing topography of membrane-inserted diphtheria toxin T domain using BODIPY-streptavidin: at low pH, helices 8 and 9 form a transmembrane hairpin but helices 5–7 form stable nonclassical inserted segments on the cis side of the bilayer. Biochemistry 43:9127–9139

    Google Scholar 

  • Roseman MA (1988) Hydrophobicity of polar amino acid side chains is markedly reduced by flanking peptide bonds. J Mol Biol 200:513–522

    Google Scholar 

  • Schendel SL, Azimov R, Pawlowski K, Godzik A, Kagan BL, Reed JC (1999) Ion channel activity of the BH3 only BCL-2 family member. BID J Biol Chem 274:21932–21936

    Google Scholar 

  • Schlame M, Rua D, Greenberg ML (2000) The biosynthesis and functional role of cardiolipin. Prog Lipid Res 39:257–288

    Google Scholar 

  • Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA, Mannela CA, Korsmeyer SJ (2002) A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2:55–67

    Google Scholar 

  • Sintes T, Baumgartner A (1998) Membrane-mediated protein attraction. A Monte Carlo study. Physica A 249:571–575

    Google Scholar 

  • Sperotto MM, May S, Baumgaertner A (2006) Modelling of proteins in membranes. Chem Phys Lipids 141:2–29

    Google Scholar 

  • Stroud RM, Reiling K, Wiener M, Freymann D (1998) Ion-channel forming colicins. Curr Opin Struct Biol 8:525–533

    Google Scholar 

  • Sung S-S (1994) Helix folding simulations with various initial conformations. Biophys J 66:1796–1803

    Google Scholar 

  • Sung S-S (1995) Folding simulations of alanine-based peptides with lysine residues. Biophys J 68:1796–1803

    Google Scholar 

  • Terrones O, Antonsson B, Yamaguchi H, Wang HG, Liu J, Lee RM, Herrmann A, Basanez G (2004) Lipidic pore formation by the concerted action of proapoptopic BAX and tBid. J Biol Chem 279:30081–30091

    Google Scholar 

  • Tzlil S, Ben-Schaul A (2005) Flexible charged molecules on mixed fluid lipid membranes: theory and Monte Carlo simulations. Biophys J 88:2391–2402

    Google Scholar 

  • van der Goot FG, Gonzalez-Manas JM, Lakey JH, Pattus F (1991) A “molten-globule” membrane-insertion intermediate of the pore-forming domain of colicin A. Nature 354:408–410

    Google Scholar 

  • Varfolomeev EE, Ashkenazi A (2004) Tumor necrosis factor: an apoptosis JuNKie? Cell 116:491–497

    Google Scholar 

  • Vogt B, Ducarme P, Schinzel S, Brasseur R, Bechinger B (2000) The topology of lysine-containing amphipathic peptides in bilayers by circular dichroism, solid-state NMR, and molecular modeling. Biophys J 79:2644–2656

    Google Scholar 

  • Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933

    Google Scholar 

  • Wang K, Yin XM, Chao DT, Milliman CL, Korsmeyer SJ (1996) Bid: a novel BH3 domain-only death agonist. Genes Dev 10:2859–2869

    Google Scholar 

  • Wei MC, Lindsen T, Mootha VK, Weiler S, Gross A, Ashiya M, Thompson CB, Korsemeyer SJ (2000) tBid, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14:2060–2071

    Google Scholar 

  • Wei MC, Zong WX, Cheng EH, Lindsten T, Panautsakoupolo V, Ross AJ, Roth KA, McGregor GR, Thompson CB, Korsmayer SJ (2001) Proapoptotic Bax and Bak: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    ADS  Google Scholar 

  • Willis SN, Adams JM (2005) Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 17:617–625

    Google Scholar 

  • Winterhalter M, Helfrich W (1992) Bending elacticity of electrically charged bilayers: coupled monolayers, neutral surfaces, and balancing stresses. J Phys Chem 96:327–330

    Google Scholar 

  • Yamaguchi S, Huster D, Waring A, Lehrer RI, Kearney W, Tack BF, Hong M (2001) Orientation and dynamics of an antimicrobial peptide in the lipid bilayer by solid-state NMR spectroscopy. Biophys J 81:2203–2214

    Article  Google Scholar 

  • Yin X-M (2006) Bid, a BH3-only multi-functional molecule, is at the cross road of life and death. Gene 369:7–19

    Google Scholar 

  • Zakharov SD, Cramer WA (2002) Colicin crystal structures: pathways and mechanisms for colicin insertion into membranes. Biochim Biophys Acta 1565:333–346

    Google Scholar 

  • Zemel A, Ben-Shaul A, May S (2004) Membrane perturbation induced by interfacially adsorbed peptides. Biophys J 86:3607–3619

    Google Scholar 

  • Zha J, Weiler S, Oh KJ, Wei MC, Korsemeyer SJ (2000) Posttranslational N-Myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science 290:1761–1765

    ADS  Google Scholar 

  • Zhan L, Chen JZY, Liu W-K (2006) Monte Carlo basin paving: an improved global optimization method. Phys Rev E 73:015701 (1–4)

    Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Gregory Nikiforovich (Washington University School of Medicine, St Louis, Missouri) for reading the early version of the manuscript and his insightful comments. This work was supported by the Program “Bioengineering and Biosecurity” of Republic of Belarus (Grant P-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery G. Veresov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

249_2007_149_MOESM1_ESM.doc

249_2007_149_MOESM2_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veresov, V.G., Davidovskii, A.I. Monte Carlo simulations of tBid association with the mitochondrial outer membrane. Eur Biophys J 37, 19–33 (2007). https://doi.org/10.1007/s00249-007-0149-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-007-0149-z

Keywords

Navigation