Skip to main content
Log in

Changes induced by hyperosmotic mannitol in cerebral endothelial cells: an atomic force microscopic study

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Understanding the reaction of living cells in response to different extracellular stimuli, such as hyperosmotic stress, is of primordial importance. Mannitol, a cell-impermeable non-toxic alcohol, has been used successfully for reversible opening of the blood–brain barrier in hyperosmotic concentrations. In this study we analyzed the effect of hyperosmotic mannitol on the shape and surface structure of living cerebral endothelial cells by atomic force microscope imaging technique. Addition of clinically relevant concentrations of mannitol to the culture medium of the confluent cells induced a decrease of about 40% in the observed height of the cells. This change was consistent both at the nuclear and peripheral region of the cells. After mannitol treatment even a close examination of the contact surface between the cells did not reveal gap between them. We could observe the appearance of surface protrusions of about 100 nm. By force measurements the elasticity of the cells were estimated. While the Young’s modulus of the control cells appeared to be 8.04 ± 0.12 kPa, for the mannitol-treated cells it decreased to an estimated value of 0.93 ± 0.04 kPa which points to large structural changes inside the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berdyyeva T, Woodworth CD, Sokolov I (2005) Visualization of cytoskeletal elements by the atomic force microscope. Ultramicroscopy 102:189–198

    Article  Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  ADS  Google Scholar 

  • Braet F, deZanger R, Wisse E (1997) Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells. J Microsc 186:84–87

    Article  Google Scholar 

  • Butt HJ, Wolff EK, Gould SAC, Northern BD, Peterson CM, Hansma PK (1990) Imaging cells with the atomic force microscope. J Struct Biol 105:54–61

    Article  Google Scholar 

  • Chung TW, Liu DZ, Wang SY, Wang SS (2003) Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. Biomaterials 24:4655–4661

    Article  Google Scholar 

  • Dejana E, Corada M, Lampugnani MG (1995) Endothelial cell-to-cell junctions. Faseb J 9:910–918

    Google Scholar 

  • Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82:2798–2810

    Google Scholar 

  • Domke J, Dannohl S, Parak WJ, Muller O, Aicher WK, Radmacher M (2000) Substrate dependent differences in morphology and elasticity of living osteoblasts investigated by atomic force microscopy. Colloids Surf B Biointerfaces 19:367–379

    Article  Google Scholar 

  • Doolitle ND, Miner ME, Hall WA, Siegal T, Jerome E, Osztie E, McAllister LD, Bubalo JS, Kraemer DF, Fortin D, Nixon R, Neuwelt EA (2000) Safety and efficacy of a multicenter study using intraarterial chemotherapy in conjunction with osmotic opening of the blood–brain barrier for the treatment of patients with malignant brain tumors. Cancer 88:637–647

    Article  Google Scholar 

  • Dufrene YF (2003) Recent progress in the application of atomic force microscopy imaging and force spectroscopy to microbiology. Curr Opin Microbiol 6:317–323

    Article  Google Scholar 

  • Engel HA (1991) Biological applications of scanning probe microscopes. Ann Rev Biophys Biophys Chem 20:79–108

    Article  MathSciNet  Google Scholar 

  • Farkas A, Szatmári E, Orbók A, Wilhelm I, Wejszka K, Nagyõszi P, Hutamekalin P, Bauer H, Bauer HC, Traweger A, Krizbai IA (2005) Hyperosmotic mannitol induces Src kinase-dependent phosphorylation of beta-catenin in cerebral endothelial cells. J Neurosci Res 80:855–861

    Article  Google Scholar 

  • Gergely C, Bahi S, Szalontai B, Flores P, Schaaf P, Voegel JC, Cuisinier FJG (2004) Human serum albumin self-assambly on weak polyelectrolyte multilayer films structurally modified by pH changes. Langmuir 20:5575–5582

    Article  Google Scholar 

  • Greenwood J, Pryce G, Devin L, dos-Santos WL, Calder VL, Adamson P (1996) SV40 large T immortalised cell lines of the rat blood–brain and blood–retinal barriers retain their phenotypic and immunological characteristics. J Neuroimmunol 71:51–63

    Article  Google Scholar 

  • Han D, Ma WY, Liao FL, Chen DY (2004) Intracellular structural changes under the stress of applied force at a nanometre range investigated by atomic force microscopy. Nanotechnology 15:120–126

    Article  ADS  Google Scholar 

  • Hassan EA, Heinz WF, Antonik MD, D’Costa NP, Nageswaran S, Schoenenberger CA, Hoh JH (1998) Relative microelastic mapping of living cells by atomic force microscopy. Biophys J 74:1564–1578

    Google Scholar 

  • Hertz MG (1881) Uber die Beruhrung Fester Elastischer Korper. J Reine Angew Math 92:156–171

    Google Scholar 

  • Kienberger F, Stroh CM, Kada G, Moser R, Baumgartner W, Pastushenko V, Rankl C, Schmidt U, Muller H, Orlova E, LeGrimellec C, Drenckhahn D, Blaas D, Hinterdorfer P (2003) Dynamic force microscopy imaging of native membranes. Ultramicroscopy 97:229–237

    Article  Google Scholar 

  • Kroll RA, Neuwelt EA (1998) Outwitting the blood–brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery 42:1083–1099

    Article  Google Scholar 

  • Le Grimellec C, Lesniewska E, Giocondi MC, Finot E, Vie V, Goudonnet JP (1998) Imaging of the surface of living cells by low-force contact-mode atomic force microscopy. Biophys J 75:695–703

    Google Scholar 

  • Ludwig M, Rief M, Schmidt L, Li H, Oesterhelt F, Gautel M, Gaub HE (1999) AFM, a tool for single-molecule experiments. Appl Phys A Mater Sci Process 68:173–176

    Article  ADS  Google Scholar 

  • Mahaffy RE, Park S, Gerde E, Kas J, Shih CK (2004) Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys J 86:1777–1793

    Google Scholar 

  • Mathur AB, Collinsworth AM, Reichert WM, Kraus WE, Truskey GA (2001) Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J Biomech 34:1545–1553

    Article  Google Scholar 

  • Moloney M, McDonnell L, O’Shea H (2004) Atomic force microscopy of BHK-21 cells: an investigation of cell fixation techniques. Ultramicroscopy 100:153–161

    Article  Google Scholar 

  • Neuwelt EA, Goldman DL, Dahlborg SA, Crossen J, Ramsey F, Roman-Goldstein S, Brazile R, Dana B (1991) Primary CNS lymphoma treated with osmotic blood–brain barrier disruption: prolonged survival and preservation of cognitive function. J Clin Oncol 9:1580–1590

    Google Scholar 

  • Oberleithner H, Ludwig T, Riethmuller C, Hillebrand U, Albermann L, Schafer C, Shahin V, Schillers H (2004) Human endothelium: target for aldosterone. Hypertension 43:952–956

    Article  Google Scholar 

  • Oberleithner H, Schneider SW, Albermann L, Hillebrand U, Ludwig T, Riethmuller C, Shahin V, Schafer C, Schillers H (2003) Endothelial cell swelling by aldosterone. J Membr Biol 196:163–172

    Article  Google Scholar 

  • Oesterhelt F, Oesterhelt D, Pfeiffer M, Engel HA, Gaub HE, Muller DJ (2000) Unfolding pathways of individual bacteriorhodopsins. Science 288:143–146

    Article  ADS  Google Scholar 

  • Ohashi T, Sato M (2005) Remodeling of vascular endothelial cells exposed to fluid shear stress: experimental and numerical approach. Fluid Dyn Res 37:40–59

    Article  ADS  MATH  Google Scholar 

  • Pardridge WM (2002) Drug and gene delivery to brain: the vascular rout. Neuron 36:555–558

    Article  Google Scholar 

  • Pesen D, Hoh JH (2005a) Micromechanical architecture of the endothelial cell cortex. Biophys J 88:670–679

    Article  Google Scholar 

  • Pesen D, Hoh JH (2005b) Modes of remodeling in the cortical cytoskeleton of vascular endothelial cells. Febs Lett 579:473–476

    Article  Google Scholar 

  • Pfister G, Stroh CM, Perschinka H, Kind M, Knoflach M, Hinterdorfer P, Wick G (2005) Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy. J Cell Sci 118:1587–1594

    Article  Google Scholar 

  • Quist AP, Rhee SK, Lin H, Lal R (2000) Physiological role of gap-junctional hemichannels: extracellular calcium-dependent isosmotic volume regulation. J Cell Biol 148:1063–1074

    Article  Google Scholar 

  • Radmacher M, Fritz M, Kacher CM, Cleveland JP, Hansma PK (1996) Measuring the viscoelastic properties of human platlets with the atomic force microscope. Biophys J 70:556–567

    Google Scholar 

  • Rappoport SI, Fredeicks WR, Ohno K, Pettigrew KD (2000) Quantitative aspects of reversible osmotic opening of blood–brain barrier. Am J Phys 238:R421–431

    Google Scholar 

  • Rotsch C, Radmacher M (2000) Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J 78:520–535

    Article  Google Scholar 

  • Sato H, Kataoka N, Kajiya F, Katano M, Takigawa T, Masuda T (2004) Kinetic study on the elastic change of vascular endothelial cells on collagen matrices by atomic force microscopy. Colloids Surf B Biointerfaces 34:141–146

    Article  Google Scholar 

  • Sharma A, Anderson K, Muller DJ (2005) Actin microridges characterized by laser scanning confocal and atomic force microscopy. Febs Lett 579:2001–2008

    Article  Google Scholar 

  • Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Engr Sci 3:47–57

    Article  MathSciNet  MATH  Google Scholar 

  • Vinckier A, Semenza G (1998) Measuring elasticity of biological materials by atomic force microscopy. Febs Lett 430:12–16

    Article  Google Scholar 

  • Wojcikiewicz EP, Zhang X, Moy VT (2004) Force and compliance measurements on living cells using atomic force microscopy (AFM). Biol Proced Online 6:1–9

    Article  Google Scholar 

  • Zhang X, Chen A, De Leon D, Li H, Noiri E, Moy VT, Goligorsky MS (2003) Atomic force microscopy measurement of leukocyte-endothelial interaction. Am J Physiol Heart Circ Physiol 286:H359–367

    Article  Google Scholar 

Download references

Acknowledgment

We acknowledge the technical work of N.T.K Dung. We are grateful for the technical assistance provided by the German representatives of the Asylum Research and especially to Stefan Vinzelberg. This work was supported by the National Science Fund of Hungary OTKA T048706 and T037956 and partly Philip Morris Inc. USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Váró.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bálint, Z., Krizbai, I.A., Wilhelm, I. et al. Changes induced by hyperosmotic mannitol in cerebral endothelial cells: an atomic force microscopic study. Eur Biophys J 36, 113–120 (2007). https://doi.org/10.1007/s00249-006-0112-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-006-0112-4

Keywords

Navigation