Skip to main content
Log in

Multilamellarity, structure and hydration of extruded POPC vesicles by SANS

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The small-angle neutron scattering (SANS) data of 12 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) dispersions at low lipid concentration (1 mg per 100-mg heavy water) prepared by 5, 9 and 29 extrusions through filters of pores with 50, 100, 200 and 400 nm diameter are presented. They were analyzed within a theory that permits the determination of both structural and hydration parameters of the bilayers as well as the portions of multilamellar vesicles in dispersions with negligible long-range order between the vesicles. The scattering length density profile across the bilayers is approximated by assuming a central hydrocarbon core surrounded by a water-accessible coat. It is modeled by two different forms of functions. In the boat model, the scattering length density of the coat changes linearly from core to water, whereas in the strip model it is constant across the water-accessible coat. It was found that the boat model reflects the reality better than the strip model. The decrease of the multilamellar vesicle portions, either with increasing the number of extrusions at same filter size and with decreasing the filter size, was characterized quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Cornell BR, Fletcher GC, Middlehurst J, Separovic F (1981) Temperature dependence of the size of phospholipids vesicles. Biochim Biophys Acta 642:375–380

    Article  PubMed  Google Scholar 

  • Engelhaaf SU, Wehrli E, Müller M, Adrian M, Schurtenberger P (1996) Determination of the size distribution of lecithin liposomes: a comparative study using freeze fracture, cryoelectron microscopy and dynamic light scattering. J Microsc 184:214–228

    Article  Google Scholar 

  • Fromherz P (1983) Lipid-vesicle structure: size control by edge-active agents. Chem Phys Lett 94:259–265

    Article  ADS  Google Scholar 

  • Gabriel NE, Roberts MF (1984) Spontaneous formation of stable unilamellar vesicles. Biochem 23:4011–4015

    Article  Google Scholar 

  • Gradshtein IS, Ryzhik IM (1971) Tables of integrals (in Russian). Nauka, Moscow

    Google Scholar 

  • Hallett FR, Nickel B, Samuels C, Krygsman PH (1991) Determination of vesicle size distributions by freeze-fracture electron microscopy. J Electr Microsc Tech 17:459

    Article  Google Scholar 

  • Hope MJ, Bally MB, Webb G, Cullis PR (1985) Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim Biophys Acta 812:55–65

    Article  Google Scholar 

  • Kiselev MA, Lesieur P, Kisselev AM, Lombardo D, Killiany M, Lesieur S (2001) Sucrose solutions as prospective medium to study the vesicle. J Alloys Compd 328:71–76

    Article  Google Scholar 

  • Mayer LD, Hope MJ, Cullis PR (1986) Vesicles of variable sizes produced by a rapid extrusion procedure structure: SAXS and SANS study. Biochim Biophys Acta 858:161–168

    Article  PubMed  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308

    Google Scholar 

  • New RRC (1990) Liposomes: a practical approach. IRL Press, Oxford

    Google Scholar 

  • Pedersen J S, Posselt D, Mortensen K (1990) Analytical treatment of the resolution function for small-angle scattering. J Appl Cryst 23:321–333

    Article  Google Scholar 

  • Rosta L (2002) Cold neutron research facility at the Budapest Neutron Centre. Appl Phys A74[Supp l.]:S52–S54

    ADS  Google Scholar 

  • Schmiedel H, Jörchel P, Kiselev M, Klose G (2001) determination of structural parameters and hydration of unilamellar POPC/C12E4 vesicles at high water excess from neutron scattering curves using a novel method of evaluation. J Phys Chem B 105:111–117

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by Bundesministerium für Bildung und Forschung (BMBF grant DUBLEI 03) and the EU, contract HPRI-CT-1999-00099 Budapest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gotthard Klose.

Appendices

Appendix 1: Derivation of Eq (1)

The neutron coherent scattering amplitude of the M-vesicle depicted in Fig. 1 is given by

$$F_{M} (q) = {\sum\limits_{m = 0}^{M - 1} {F_{m} (q)} },$$
(7)

where

$$F_m \left( q \right) = \frac{{4\pi }} {q} \cdot \int\limits_{\left( {d_L /2} \right)}^{d_{\rm L}/2} {\left( {r_m + x} \right) \cdot \sin \left[ {q \cdot \left( {r_m + x} \right)} \right] \cdot \rho \left( x \right){\rm d}x} = \frac{{4\pi }} {q} \cdot \left( {\frac{{ - \partial }} {{\partial q}}} \right)\int\limits_{\left( {d_{\rm L}/2} \right)}^{d_{\rm L}/2} {\cos \left[ {q \cdot \left( {r_m + x} \right)} \right] \cdot \rho \left( x \right){\text{d}}x} $$
(8)

is the form factor of the m-th bilayer in the vesicle. r m =r 0+m·d is the midpoint radius of that bilayer, and the scattering length density difference between the membrane and the solvent is described by ρ(x) at point x. As the bilayers in Fig. 1 are assumed to be symmetric, i.e.,

$$\rho (- x) = \rho (x), $$
(9)

we obtain for the integral in (8)

$$\begin{aligned} F_m \left( q \right) = \frac{{4\pi }} {q} \cdot \int\limits_{\left( {d_L /2} \right)}^{d_{\rm L}/2} {\left( {r_m + x} \right) \cdot \sin \left[ {q \cdot \left( {r_m + x} \right)} \right] \cdot \rho \left( x \right){\rm d}x} = \frac{{4\pi }} {q} \cdot \left( {\frac{{ - \partial }} {{\partial q}}} \right)\int\limits_{\left( {d_{\rm L} /2} \right)}^{d_L /2} {\cos \left[ {q \cdot \left( {r_m + x} \right)} \right] \cdot \rho \left( x \right){\text{d}}x} \\ \int\limits_{\left( {d_L /2} \right)}^{d_L /2} {\cos \left[ {q \cdot \left( {r_m + x} \right)} \right] \cdot \rho \left( x \right){\text{d}}x} = \cos \left( {qr_m } \right) \cdot \rho \left( q \right) \\ \end{aligned} $$
(10)

with

$$\rho \left( q \right) = \rho ^{{\text{strip}}} \left( q \right) = \frac{2} {q} \cdot \left[ {\left( {\rho _h - \rho _s } \right) \cdot \sin \left( {q \cdot \frac{{d_{\rm L} }} {2}} \right) + \left( {\rho _c - \rho _h } \right) \cdot \sin \left( {q \cdot \frac{c} {2}} \right)} \right] $$
(11a)

and

$$\rho \left( q \right) = \rho ^{{\text{boat}}} \left( q \right) = \frac{2} {q} \cdot \left( {\rho _c - \rho _s } \right) \cdot \left\{ {\sin \left( {q \cdot \frac{{d_{\rm L} }} {2}} \right) \cdot \frac{{\sin \left( {q \cdot h} \right)}} {{q \cdot h}} + \cos \left( {q \cdot \frac{{d_{\rm L} }} {2}} \right) \cdot \frac{{\left( {1 - \cos \left( {q \cdot \frac{{d_{\rm L} }} {2}} \right)} \right)}} {{q \cdot h}}} \right\}$$
(11b)

in case of the strip and the boat model, respectively.

The summation in (7) can be performed using the formula

$$\sum\limits_{m = 0}^{M - 1} {\cos \left( {qr_m } \right) = \cos \left[ {q \cdot \left( {r_0 + \left( {M - 1} \right) \cdot \frac{d} {2}} \right)} \right]} \cdot \frac{{\sin \left( {\frac{{qMd}} {2}} \right)}} {{\sin \frac{{qd}} {2}}}$$
(12)

giving

$$F_m \left( q \right) = \left( {\frac{{4\pi }} {q}} \right) \cdot \left( {\frac{{ - \partial }} {{\partial q}}} \right)\left\{ {\cos \left( {r_{0M} } \right) \cdot f_M \left( q \right)} \right\}$$
(13)

Here \(r_{{0M}} = r_{0} + (M - 1) \cdot \frac{d}{2}\) is the radius of the vesicle consisting of M bilayers with r 0 as the midpoint radius of the innermost bilayer in the vesicle, and

$$f_{M} (q) = \rho (q) \cdot \frac{{\sin {\left( {\frac{{qMd}}{2}} \right)}}}{{\sin {\left( {\frac{{qd}}{2}} \right)}}}.$$

The average coherent cross section of the M-vesicles is given by the averaged squared absolute value of the scattering amplitude:

$$ I^{{{\text{coh}}}}_{M} {\left( q \right)} = {\left\langle {{\left| {F_{M} {\left( q \right)}} \right|}^{2} } \right\rangle } = {\left( {\frac{{4\pi }} {q}} \right)} \cdot {\left\langle {{\left[ {r_{{0M}} \cdot \sin {\left( {qr_{{0M}} } \right)} \cdot f_{M} {\left( q \right)} + \cos {\left( {qr_{{0M}} } \right)} \cdot {\left( {\frac{{ - \partial }} {{\partial q}}} \right)}f_{M} {\left( q \right)}} \right]}^{2} } \right\rangle } $$
(14)

The second term in the brackets can be neglected with respect to the first one in case of \(r_{{0M}} \gg d,\) giving (1).

Appendix 2: Averaging over vesicle-radius distribution

Using the integral (Gradshtein and Ryzhik 1971)

$$\int\limits_0^\infty {x^{\mu - 1} e^{ - \beta \cdot x} \cos \left( {\delta \cdot x} \right){\rm d}x = \frac{{\Gamma \left( \mu \right)}} {{\left( {\delta ^2 + \beta ^2 } \right)^{\frac{\mu } {2}} }} \cdot \cos \left( {\mu \cdot {\text{arcton}}\left( {\frac{\delta } {\beta }} \right)} \right)} $$

the averaging over the radius distribution in (1) can be performed readily giving

$$\left\langle {r_{0M} ^2 \cdot \sin ^2 \left( {q \cdot r_{0M} } \right)} \right\rangle = \frac{5} {8}R^2 \cdot \left\{ {1 + \xi ^3 \cdot \left[ {1 - 18 \cdot \xi + 48 \cdot \xi ^2 - 32 \cdot \xi ^3 } \right]} \right\}$$

with

$$\xi = \frac{1}{{1 + {\left( {\frac{{q \cdot R}}{2}} \right)}^{2} }}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmiedel, H., Almásy, L. & Klose, G. Multilamellarity, structure and hydration of extruded POPC vesicles by SANS. Eur Biophys J 35, 181–189 (2006). https://doi.org/10.1007/s00249-005-0015-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-005-0015-9

Keywords

Navigation