Skip to main content
Log in

Why are insect olfactory receptor neurons grouped into sensilla? The teachings of a model investigating the effects of the electrical interaction between neurons on the transepithelial potential and the neuronal transmembrane potential

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Insect olfactory receptor neurons are compartmentalized in sensilla. In a sensillum, typically two receptor neurons are in close contact and can influence each other through electrical interaction during stimulation. This interaction is passive, non-synaptic and a consequence of the electrical structure of the sensillum. It is analysed in a sensillum model and its effects on the neuron receptor potentials are investigated. The neurons in a sensillum can be both sensitive to a given odorant compound with the same sensory threshold or with different thresholds, or only one neuron be sensitive to the odorant. These three types of sensilla are compared with respect to maximum amplitude, threshold and dynamic range of the potentials. It is found that gathering neurons in the same sensillum is disadvantageous if they are identical, but can be advantageous if their thresholds differ. Application of these results to actual recordings from pheromone and food-odour olfactory sensilla is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a–f
Fig. 5a–c
Fig. 6a–i
Fig. 7a–c
Fig. 8a–d

Similar content being viewed by others

References

  • Altner H, Prillinger L (1980) Ultrastructure of invertebrate chemo-, thermo-, and hygroreceptors and its functional significance. Int Rev Cytol 67:69–139

    Google Scholar 

  • Boeckh J, Ernst KD, Selsam P (1987) Neurophysiology and neuroanatomy of the olfactory pathway in the cockroach. In: Roper SD, Atema J (eds) Olfaction and taste IX. New York Academy of Sciences, New York, pp 39–43

  • Buck LB (1996) Information coding in the vertebrate olfactory system. Annu Rev Neurosci 19:517–544

    CAS  PubMed  Google Scholar 

  • de Bruyne M, Clyne PJ, Carlson JR (1999) Odor coding in a model olfactory organ: the Drosophila maxillary palp. J Neurosci 19:4520–4532

    PubMed  Google Scholar 

  • de Bruyne M, Foster K, Carlson JR (2001) Odor coding in the Drosophila antenna. Neuron 30:537–552

    Article  PubMed  Google Scholar 

  • Fadamiro HY, Cosse AA, Baker TC (1999) Fine-scale resolution of closely spaced pheromone and antagonist filaments by flying male Helicoverpa zea. J Comp Physiol A 185:131–141

    Google Scholar 

  • Hildebrand JG, Shepherd GM (1997) Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 20:595–631

    CAS  PubMed  Google Scholar 

  • Kaissling K-E (1987) In Colbow K (ed) RH Wright lectures on insect olfaction. Simon Fraser University, Burnaby, BC, Canada

  • Kaissling K-E (1995) Single unit and electroantennogram recordings in insect olfactory organs. In: Spielman AI, Brand JG (eds) Experimental cell biology of taste and olfaction, current techniques and protocols. CRC Press, Boca Raton, pp 361–377

  • Kaissling K-E (2001) Olfactory perireceptor and receptor events in moths: a kinetic model. Chem Senses 26:125–150

    CAS  PubMed  Google Scholar 

  • Kaissling K-E, Thorson J (1980) Insect olfactory sensilla: structural, chemical and electrical aspects of the functional organization. In: Satelle DB, Hall LM, Hildebrand JG (eds) Receptors for neurotransmitters, hormones and pheromones in insects. Elsevier, Amsterdam, pp 261–282

  • Keil TA (1999) Morphology and development of the peripheral olfactory organs. In: Hansson B (ed) Insect olfaction. Springer, Berlin Heidelberg New York, pp 5–47

  • Krieger J, Breer H (1999) Olfactory reception in invertebrates. Science 286:720–723

    Article  CAS  PubMed  Google Scholar 

  • Meunier N, Marion-Poll F, Rospars JP, Tanimura T (2003) Coding of bitter taste in Drosophila. J Neurobiol 56:139–152

    Article  PubMed  Google Scholar 

  • Rospars J-P (1988) Structure and development of the insect antennodeutocerebral system. Int J Insect Morphol Embryol 17:243–294

    Google Scholar 

  • Rospars J-P, Lansky P, Tuckwell H, Vermeulen A (1996) Coding of odor intensity in a steady-state deterministic model of an olfactory receptor neuron. J Comput Neurosci 3:51–72

    CAS  PubMed  Google Scholar 

  • Rospars J-P, Lansky P, Duchamp-Viret P, Duchamp A (2003) Relation between stimulus and response in frog olfactory receptor neurons in vivo. Eur J Neurosci 18:1135–1154

    Article  PubMed  Google Scholar 

  • Schneider D, Kaissling KE (1957) Der Bau der Antenne des Seidenspinners Bombyx mori L. II. Sensillen, cuticulare Bildungen und innerer Bau. Zool Jahrb Abt Anat Ontog Tiere 76:223–250

    Google Scholar 

  • Selzer R (1984) On the specificities of antennal olfactory receptor cells of Periplaneta americana. Chem Senses 8:375–395

    CAS  Google Scholar 

  • Steinbrecht RA (1970) Zur Morphometrie der Antenne des Seidenspinners, Bombyx mori L.: Zahl und Verteilung des Riechsensillen (Insecta, Lepidoptera). Z Morphol Tiere 68:93–126

    Google Scholar 

  • Steinbrecht RA (1996) Structure and function of insect olfactory sensilla. In: Bock GR, Cardew G (eds) Olfaction in mosquito-host interactions. Wiley, Chichester, pp 158–177

  • Steinbrecht RA (1997) Pore structures in insect olfactory sensilla: a review of data and concept. Int J Insect Morphol Embryol 26:229–245

    Article  Google Scholar 

  • Thurm U (1974) Basics of the generation of receptor potentials in epidermal mechanoreceptors of insects. In: Schwartzkopff J (ed) Symposium on mechanoreception. Rheinisch-Westfälische Akademie der Wissenschaften, Abhandlung Band 53. Westdeutscher Verlag, pp 355–385

  • Todd JL, Baker TC (1999) Function of peripheral olfactory organs. In: Hansson B (ed) Insect olfaction. Springer, Berlin Heidelberg New York, pp 67–96

  • Vermeulen A, Rospars J-P (1998a) Dendritic integration in olfactory sensory neurons: a steady-state analysis of how the neuron structure and neuron environment influence the coding of odor intensity. J Comput Neurosci 5:243–266

    CAS  PubMed  Google Scholar 

  • Vermeulen A, Rospars J-P (1998b) A simple analytical method for determining the steady-state potential in models of geometrically complex neurons. J Neurosci Methods 82:123–133

    CAS  PubMed  Google Scholar 

  • Vermeulen A, Rospars J-P (2001a) Membrane potential and its electrode-recorded counterpart in an electrical model of an olfactory sensillum. Eur Biophys J 29:587–596

    Article  CAS  PubMed  Google Scholar 

  • Vermeulen A, Rospars J-P (2001b) Electrical circuitry of an insect olfactory sensillum. Neurocomputing 32–40:1011–1017

    Google Scholar 

  • Zack C (1979) Sensory adaptation in the sex pheromone receptor cells of saturniid moths. Doctoral thesis, LMU München, pp 1–99

Download references

Acknowledgements

We thank Prof. Karl-Ernst Kaissling, Prof. Frédéric Marion-Poll and Dr Philippe Lucas for useful comments on a previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Rospars.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vermeulen, A., Rospars, JP. Why are insect olfactory receptor neurons grouped into sensilla? The teachings of a model investigating the effects of the electrical interaction between neurons on the transepithelial potential and the neuronal transmembrane potential. Eur Biophys J 33, 633–643 (2004). https://doi.org/10.1007/s00249-004-0405-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-004-0405-4

Keywords

Navigation