Skip to main content
Log in

Environments and Hosts Structure the Bacterial Microbiomes of Fungus-Gardening Ants and their Symbiotic Fungus Gardens

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract 

The fungus gardening-ant system is considered a complex, multi-tiered symbiosis, as it is composed of ants, their fungus, and microorganisms associated with either ants or fungus. We examine the bacterial microbiome of Trachymyrmex septentrionalis and Mycetomoellerius turrifex ants and their symbiotic fungus gardens, using 16S rRNA Illumina sequencing, over a region spanning approximately 350 km (east and central Texas). Typically, microorganisms can be acquired from a parent colony (vertical transmission) or from the environment (horizontal transmission). Because the symbiosis is characterized by co-dispersal of the ants and fungus, elements of both ant and fungus garden microbiome could be characterized by vertical transmission. The goals of this study were to explore how both the ant and fungus garden bacterial microbiome are acquired. The main findings were that different mechanisms appear to explain the structure the microbiomes of ants and their symbiotic fungus gardens. Ant associated microbiomes had a strong host ant signature, which could be indicative of vertical inheritance of the ant associated bacterial microbiome or an unknown mechanism of active uptake or screening. On the other hand, the bacterial microbiome of the fungus garden was more complex in that some bacterial taxa appear to be structured by the ant host species, whereas others by fungal lineage or the environment (geographic region). Thus bacteria in fungus gardens appear to be acquired both horizontally and vertically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Raw microbiome sequences for all samples have been uploaded to NCBI under the BioProject PRJNA789907. Fungal ITS sequences from all applicable fungal garden samples have been uploaded to GenBank, with accession numbers found in Table 1. Our Qiime2 pipeline, along with sample R script used during the post-processing analysis, can be found at https://github.com/bsbringhurst/TS-and-MT-Microbiome-Files. The resulting OTU table output by our Qiime2 pipeline can be found in the DRYAD Digital Repository at https://doi.org/10.5061/dryad.7wm37pvv1.

References

  1. Andersen S, Hansen L, Sapountzis P, Sørensen S, Boomsma JJ (2013) Specificity and stability of the Acromyrmex-Pseudonocardia symbiosis. Mol Ecol 22:4307–4321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Van Arnam EB, Currie CR, Clardy J (2018) Defense contracts: molecular protection in insect-microbe symbioses. Chem Soc Rev 47:1638–1651

    Article  PubMed  Google Scholar 

  3. Aylward FO, Burnum KE, Scott JJ, Suen G, Tringe SG, Adams SM, Barry KW, Nicora CD, Piehowski PD, Purvine SO, Starrett GJ, Goodwin LA, Smith RD, Lipton MS, Currie CR (2012) Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens. ISME J 6:1688–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Batey SFD, Greco C, Hutchings MI, Wilkinson B (2020) Chemical warfare between fungus-growing ants and their pathogens. Curr Opin Chem Biol 59:172–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beigel K, Matthews AE, Kellner K, Pawlik C, Greenwold M, Seal JN (2021) Cophylogenetic analyses of ant-fungal specificity: “one to one with some exceptions.” Mol Ecol 30:5605–5620

    Article  PubMed  Google Scholar 

  6. Blüthgen N, Gebauer G, Fiedler K (2003) Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community. Oecologia 137:426–435

    Article  PubMed  Google Scholar 

  7. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:90

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu Y-X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Borm SV, Buschinger A, Boomsma JJ, Billen J (2002) Tetraponera ants have gut symbionts related to nitrogen–fixing root–nodule bacteria. Proc Royal Soc London. Series B: Biological Sciences 269:2023–2027

    Article  PubMed Central  Google Scholar 

  10. Brown JJ, Mihaljevic JR, Des Marteaux L, Hrček J (2020) Metacommunity theory for transmission of heritable symbionts within insect communities. Ecol Evol 10:1703–1721

    Article  PubMed  Google Scholar 

  11. Bruner-Montero G, Wood M, Horn Heidi A, Gemperline E, Li L, Currie Cameron R, Cavanaugh Colleen M (2021) Symbiont-Mediated protection of Acromyrmex leaf-cutter ants from the entomopathogenic fungus Metarhizium anisopliae. mBio 12:e01885-21

  12. Cáceres MD, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574

    Article  PubMed  Google Scholar 

  13. Cafaro M, Poulsen M, Little AEF, Price S, Gerardo NM, Wong B, Stuart AE, Larget B, Abbot P, Currie CR (2011) Specificity in the symbiotic association between fungus-growing ants and protective Pseudonocardia bacteria. Proc R Soc B 278:1814–1822

    Article  PubMed  Google Scholar 

  14. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clay K (2014) Defensive-symbiosis: a microbial perspective. Funct Ecol 28:293–298

    Article  Google Scholar 

  16. Colwell RK (2013) EstimateS: Statistical estimation of species richness and shared species from samples. (Version version 9.1). Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs. Retrieved from http://viceroy.eeb.uconn.edu/estimates

  17. Currie CR, Bot ANM, Boomsma JJ (2003) Experimental evidence of a tripartite mutualism: bacteria protect ant fungus gardens from specialized parasites. Oikos 101:91–102

    Article  Google Scholar 

  18. Currie CR, Scott JA, Summerbell RC, Malloch D (1999) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701–704

    Article  CAS  Google Scholar 

  19. Davidson DW, Cook SC, Snelling RR, Chua TH (2003) Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300:969–972

    Article  CAS  PubMed  Google Scholar 

  20. Dheilly NM, Poulin R, Thomas F (2015) Biological warfare: Microorganisms as drivers of host-parasite interactions. Infect Genet Evol 34:251–259. https://doi.org/10.1016/j.meegid.2015.05.027

  21. Diggs GM, Lipscomb BL, Reed MD, O’Kennon RJ (2006) Illustrated flora of East Texas, Volume One. Bot Res Inst Texas, Fort Worth, Texas

  22. Douglas AE (2010) The Symbiotic habit. Princeton University Press, Princeton, New Jersey

    Book  Google Scholar 

  23. Douglas AE (2011) Lessons from Studying insect symbioses. Cell Host Microbe 10:359–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Douglas AE (2014) Symbiosis as a general principle in eukaryotic evolution. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a016113

    Article  PubMed  PubMed Central  Google Scholar 

  25. Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34

    Article  CAS  PubMed  Google Scholar 

  26. Dowd SE, Callaway T, Wolcott R, Sun Y, McKeehan T, Hagevoort R, Edrington T (2008) Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial gag-encoded FLX amplicon pyrosequencing (tTEFAP). BMC Microbiology 8:125

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dusa A (2022) venn: Draw Venn Diagrams. R package version 1.11

  28. Farji-Brener AG, Werenkraut V (2017) The effects of ant nests on soil fertility and plant performance: a meta-analysis. J Anim Ecol 86:866–877

    Article  PubMed  Google Scholar 

  29. Feldhaar H (2011) Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol Entomol 36:533–543

    Article  Google Scholar 

  30. Fernández-Marín H, Zimmerman JK, Nash DR, Boomsma JJ, Wcislo WT (2009) Reduced biological control and enhanced chemical pest management in the evolution of fungus farming in ants. Proc R Soc B 276:2263–2269

    Article  PubMed  PubMed Central  Google Scholar 

  31. de Fine Licht H, Boomsma J (2010) Forage collection, substrate preparation, and diet composition in fungus-growing ants. Ecological Entomology 35:259–269

    Article  Google Scholar 

  32. De Fine Licht HH, Boomsma JJ (2014) Variable interaction specificity and symbiont performance in Panamanian Trachymyrmex and Sericomyrmex fungus-growing ants. BMC Evol Biol 14:244

    Article  PubMed  PubMed Central  Google Scholar 

  33. Francoeur CB, May DS, Thairu MW, Hoang DQ, Panthofer O, Bugni TS, Pupo MT, Clardy J, Pinto-Tomas AA, Currie CR (2021) Burkholderia from Fungus Gardens Of Fungus-Growing Ants Produces Antifungals That Inhibit The Specialized Parasite Escovopsis. Appl Environ Microbiol 87:e0017821

    Article  PubMed  Google Scholar 

  34. Garcia JR, Gerardo NM (2014) The symbiont side of symbiosis: do microbes really benefit? Front Microbiol 5:510

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gerardo NM, Mueller UG, Currie CR (2006) Complex host-pathogen coevolution in the Apterostigma fungus-growing ant-microbe symbiosis. BMC Evol Biol 6:88

    Article  PubMed  PubMed Central  Google Scholar 

  36. Goldstein SL, Klassen JL (2020) Pseudonocardia Symbionts of fungus-growing ants and the evolution of defensive secondary metabolism. Front Microbiol 11:621041–621041

  37. Green EA, Klassen JL (2022) Trachymyrmex septentrionalis ant microbiome assembly is unique to individual colonies and castes. mSphere 7:e00989-21

  38. Hambleton EA, Guse A, Pringle JR (2014) Similar specificities of symbiont uptake by adults and larvae in an anemone model system for coral biology. J Exp Biol 217:1613–1619

    PubMed  PubMed Central  Google Scholar 

  39. Hölldobler B, Wilson EO (2011) The Leafcutter Ants. Norton, New York, W.W

    Google Scholar 

  40. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Article  PubMed  Google Scholar 

  41. Howe-Kerr LI, Bachelot B, Wright RM, Kenkel CD, Bay LK, Correa AMS (2020) Symbiont community diversity is more variable in corals that respond poorly to stress. Glob Change Biol 26:2220–2234

    Article  Google Scholar 

  42. Hu Y, Sanders JG, Łukasik P, D’Amelio CL, Millar JS, Vann DR, Lan Y, Newton JA, Schotanus M, Kronauer DJC, Pierce NE, Moreau CS, Wertz JT, Engel P, Russell JA (2018) Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome. Nat Commun 9:964

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ishak HD, Miller JL, Sen R, Dowd SE, Meyer E, Mueller UG (2011) Microbiomes of ant castes implicate new microbial roles in the fungus-growing ant Trachymyrmex septentrionalis. Sci Rep 1:204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ješovnik A, Sosa-Calvo J, Lloyd MW, Branstetter MG, Fernández F, Schultz TR (2017) Phylogenomic species delimitation and host-symbiont coevolution in the fungus-farming ant genus Sericomyrmex Mayr (Hymenoptera: Formicidae): ultraconserved elements (UCEs) resolve a recent radiation. Syst Entomol 42:523–542

    Article  Google Scholar 

  45. Johansson H, Dhaygude K, Lindström S, Helanterä H, Sundström L, Trontti K (2013) A metatranscriptomic approach to the identification of microbiota associated with the ant Formica exsecta. PLoS ONE 8:e79777

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kaltenpoth M (2009) Actinobacteria as mutualists: general healthcare for insects? Trends Microbiol 17:529–535

    Article  CAS  PubMed  Google Scholar 

  47. Kaltenpoth M, Engl T (2013) Defensive microbial symbionts in Hymenoptera. Funct Ecol 28:315–327

    Article  Google Scholar 

  48. Kaltenpoth M, Göttler W, Herzner G, Strohm E (2005) Symbiotic bacteria protect wasp larvae from fungal infection. Curr Biol 15:475–479

    Article  CAS  PubMed  Google Scholar 

  49. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kellner K, Ishak HD, Linksvayer TA, Mueller UG (2015) Bacterial community composition and diversity in an ancestral ant fungus symbiosis. FEMS Microbiol Ecol 91:fiv073

    Article  PubMed  Google Scholar 

  51. Kellner K, Kardish MR, Seal JN, Linksvayer TA, Mueller UG (2018) Symbiont-mediated host-parasite dynamics in a fungus-gardening ant. Microb Ecol 76:530–543

    Article  PubMed  Google Scholar 

  52. Kim MK, Na J-R, Lee T-H, Im W-T, Soung N-K, Yang D-C (2007) Solirubrobacter soli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 57:1453–1455

  53. King JR, Warren RJ, Bradford MA (2013) Social insects dominate eastern US temperate hardwood forest macroinvertebrate communities in warmer regions. PLoS ONE 8:e75843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Klassen JL (2019) Ecology helps bound causal explanations in microbiology. Biol Philos 35:3

    Article  Google Scholar 

  55. Klepzig KD, Adams AS, Handelsman J, Raffa KF (2009) Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on Humans. Enviromental Entomol 38:67–77

    Article  CAS  Google Scholar 

  56. Li H, Sosa-Calvo J, Horn HA, Pupo MT, Clardy J, Rabeling C, Schultz TR, Currie CR (2018) Convergent evolution of complex structures for ant–bacterial defensive symbiosis in fungus-farming ants. Proc Natl Acad Sci USA 115:10720–10725

  57. Lim SJ, Bordenstein SR (2020) An introduction to phylosymbiosis. Proc Royal Soc B: Biol Sci 287:20192900

    Article  Google Scholar 

  58. Little AEF, Currie CR (2008) Black yeast symbionts compromise the efficiencey of antibiotic defenses in fungus-growing ants. Ecology 89:1216–1222

    Article  PubMed  Google Scholar 

  59. Luiso J, Kellner K, Matthews AE, Mueller UG, Seal JN (2020) High diversity and multiple invasions to North America by fungi grown by the northern-most Trachymyrmex and Mycetomoellerius ant species. Fungal Ecol 44:100878

    Article  Google Scholar 

  60. Mandal S, van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD (2015) Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis 26:27663

  61. Matthews AE, Kellner K, Seal JN (2021) Male-biased dispersal in a fungus-gardening ant symbiosis. Ecol Evol 11:2307–2320

    Article  PubMed  PubMed Central  Google Scholar 

  62. Matthews AE, Rowan C, Stone C, Kellner K, Seal JN (2020) Development, characterization, and cross-amplification of polymorphic microsatellite markers for North American Trachymyrmex and Mycetomoellerius ants. BMC Res Notes 13:173

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mattoso TC, Moreira DDO, Samuels RI (2012) Symbiotic bacteria on the cuticle of the leaf-cutting ant Acromyrmex subterraneus subterraneus protect workers from attack by entomopathogenic fungi. Biol Let 8:461–464

  64. McFall-Ngai M, Hadfield MG, Bosch TC, Carey HV, Domazet-Loso T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF, Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz D, Wernegreen JJ (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA 110:3229–3236

  65. Medina M, Baker DM, Baltrus DA, Bennett GM, Cardini U, Correa AMS, Degnan SM, Christa G, Kim E, Li J, Nash DR, Marzinelli E, Nishiguchi M, Prada C, Roth MS, Saha M, Smith CI, Theis KR, and Zaneveld J (2022) Grand Challenges in coevolution. Front Ecol Evol 9

  66. van der Meij A, Worsley SF, Hutchings MI, van Wezel GP (2017) Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev 41:392–416

    Article  PubMed  Google Scholar 

  67. Meirelles LA, McFrederick QS, Rodrigues A, Mantovani JD, de Melo Rodovalho C, Ferreira H, Bacci M Jr, Mueller UG (2016) Bacterial microbiomes from vertically transmitted fungal inocula of the leaf-cutting ant Atta texana. Environ Microbiol Rep 8:630–640

  68. Meirelles LA, Mendes TD, Solomon SE, Bueno OC, Pagnocca FC, Rodrigues A (2014) Broad Escovopsis-inhibition activity of Pseudonocardia associated with Trachymyrmex ants. Environ Microbiol Rep 6:339–345

  69. Mendes TD, Rodrigues A, Dayo-Owoyemi I, Marson FAL, Pagnocca FC (2012) Generation of nutrients and detoxification: possible roles of yeasts in leaf-cutting ant nests. Insects 3:228–245

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mikheyev AS, Mueller UG, Boomsma JJ (2007) Population genetic signatures of diffuse co-evolution between leaf-cutting ants and their cultivar fungi. Mol Ecol 16:209–216

    Article  CAS  PubMed  Google Scholar 

  71. Mikheyev AS, Vo TL, Mueller UG (2008) Phylogeography of post-Pleistocene population expansion in a fungus-gardening ant and its microbial mutualists. Mol Ecol 17:4480–4488

    Article  CAS  PubMed  Google Scholar 

  72. Montoya QV, Martiarena MJS, Bizarria R Jr, Gerardo NM, Rodrigues A (2021) Fungi inhabiting attine ant colonies: reassessment of the genus Escovopsis and description of Luteomyces and Sympodiorosea gens. nov. IMA Fungus 12:23

  73. Moore GW, Edgar CB, Vogel JG, Washington-Allen RA, March RG, Zehnder R (2016) Tree mortality from an exceptional drought spanning mesic to semiarid ecoregions. Ecol Appl 26:602–611

    Article  PubMed  Google Scholar 

  74. Moran NA (2001) Bacterial menageries inside insects. Proc Natl Acad Sci USA 98:1338–1340

  75. Mueller UG, Ishak H, Lee JC, Sen R, Gutell RR (2010) Placement of attine ant-associated Pseudonocardia in a global Pseudonocardia phylogeny (Pseudonocardiaceae, Actinomycetales): a test of two symbiont-association models. Antonie Van Leeuwenhoek 98:195–212

  76. Mueller U, Kardish M, Ishak H, Wright A, Solomon S, Bruschi S, Carlson A, Bacci M (2018) Phylogenetic patterns of ant–fungus associations indicate that farming strategies, not only a superior fungal cultivar, explain the ecological success of leafcutter ants. Mol Ecol 27:2414–2434

    Article  PubMed  Google Scholar 

  77. Neuvonen M-M, Tamarit D, Näslund K, Liebig J, Feldhaar H, Moran NA, Guy L, Andersson SGE (2016) The genome of Rhizobiales bacteria in predatory ants reveals urease gene functions but no genes for nitrogen fixation. Sci Rep 6:39197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Oksanen J, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, and Wagner H (2018) vegan: community ecology package. R package version 2.4–6

  79. Osti JF, Rodrigues A (2018) Escovopsioides as a fungal antagonist of the fungus cultivated by leafcutter ants. BMC Microbiol 18:130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Parfrey LW, Moreau CS, Russell JA (2018) Introduction: the host-associated microbiome: Pattern, process and function. Mol Ecol 27:1749–1765

    Article  PubMed  Google Scholar 

  81. Parr CL, Eggleton P, Davies AB, Evans TA, Holdsworth S (2016) Suppression of savanna ants alters invertebrate composition and influences key ecosystem processes. Ecology 97:1611–1617

    Article  CAS  PubMed  Google Scholar 

  82. Pinto-Tomás AA, Anderson M, Suen G, Stevenson D, Cleland W, Weimer P, Currie CR (2009) Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326:1120–1123

    Article  PubMed  Google Scholar 

  83. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  CAS  PubMed  Google Scholar 

  84. Rabeling C, Cover SP, Johnson RA, Mueller UG (2007) A review of the North American species of the fungus-gardening ant genus Trachymyrmex (Hymenoptera: Formicidae). Zootaxa 1664:1–53

    Google Scholar 

  85. Reddy GSN, Garcia-Pichel F (2009) Description of Patulibacter americanus sp. nov., isolated from biological soil crusts, emended description of the genus Patulibacter Takahashi et al. 2006 and proposal of Solirubrobacterales ord. nov. and Thermoleophilales ord. nov. Int J Syst Evol Microbiol 59:87–94

  86. Rodrigues A, Cable RN, Mueller UG, Bacci M Jr, Pagnocca FC (2009) Antagonistic interactions between garden yeasts and microfungal garden pathogens of leaf-cutting ants. Antonie Van Leeuwenhoek 96:331–342

    Article  PubMed  Google Scholar 

  87. Rodrigues A, Mueller UG, Ishak HD, Bacci M Jr, Pagnocca FC (2011) Ecology of microfungal communities in gardens of fungus-growing ants (Hymenoptera: Formicidae): a year-long survey of three species of attine ants in Central Texas. FEMS Microbiol Ecol 78:244–255

    Article  CAS  PubMed  Google Scholar 

  88. Ronque MUV, Lyra ML, Migliorini GH, Bacci M, Oliveira PS (2020) Symbiotic bacterial communities in rainforest fungus-farming ants: evidence for species and colony specificity. Sci Rep 10:10172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sapountzis P, Nash DR, Schiøtt M, Boomsma JJ (2019) The evolution of abdominal microbiomes in fungus-growing ants. Mol Ecol 28:879–899

    Article  PubMed  Google Scholar 

  90. Sapountzis P, Zhukova M, Hansen LH, Sorensen SJ, Schiott M, Boomsma JJ (2015) Acromyrmex Leaf-cutting ants have simple gut microbiota with nitrogen-fixing potential. Appl Environ Microbiol 81:5527–5537

  91. Schultz TR, Brady SG (2008) Major evolutionary transitions in ant agriculture. Proc Natl Acad Sci USA 105:5435–5440

  92. Schultz TR, Sosa-Calvo J, Brady SG, Lopes CT, Mueller UG, Bacci M Jr, Vasconcelos HL (2015) The most relictual fungus-farming ant species cultivates the most recently evolved and highly domesticated fungal symbiont species. Am Nat 185:693–703

    Article  PubMed  Google Scholar 

  93. Seal JN, Mueller UG (2014) Instability of novel ant-fungal associations suggest that microbial interactions constrain horizontal transfer in higher fungus-gardening ants. Evol Ecol 28:157–176

    Article  Google Scholar 

  94. Seal JN, Schiøtt M, Mueller UG (2014) Ant-fungal species combinations engineer physiological activity of fungus gardens. J Exp Biol 217:2540–2547

    CAS  PubMed  Google Scholar 

  95. Seal JN, Thiebaud J, Mueller UG (2015) Gone to Texas: comparative phylogeography of two Trachymyrmex species along the southeastern coastal plain of North America. Biol J Lin Soc 114:689–698

    Article  Google Scholar 

  96. Sen R, Ishak HD, Estrada D, Dowd SE, Hong E, Mueller UG (2009) Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants. Proc Natl Acad Sci, USA 106:17805–17810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Senula SF, Scavetta JT, Banta JA, Mueller UG, Seal JN, Kellner K (2019) Potential Distribution of six North American Higher-attine fungus-farming ant (Hymenoptera: Formicidae) Species. J Insect Sci 19:1–11

    Article  Google Scholar 

  98. Silverstein RN, Correa AM, Baker AC (2012) Specificity is rarely absolute in coral-algal symbiosis: implications for coral response to climate change. Proc Biol Sci 279:2609–2618

    PubMed  PubMed Central  Google Scholar 

  99. Singleton DR, Furlong MA, Peacock AD, White DC, Coleman DC, Whitman WB (2003) Solirubrobacter pauli gen. nov., sp. nov., a mesophilic bacterium within the Rubrobacteridae related to common soil clones. Int J Syst Evol Microbiol 53:485–490

  100. Solomon SE, Rabeling C, Sosa-Calvo J, Lopes CT, Rodrigues A, Vasconcelos HL, Bacci M, Mueller UG, Schultz TR (2019) The molecular phylogenetics of Trachymyrmex Forel ants and their fungal cultivars provide insights into the origin and coevolutionary history of ‘higher-attine’ ant agriculture. Syst Entomol 44:939–956

    Article  Google Scholar 

  101. Swanson AC, Schwendenmann L, Allen MF, Aronson EL, Artavia-León A, Dierick D, Fernandez-Bou AS, Harmon TC, Murillo-Cruz C, Oberbauer SF, Pinto-Tomás AA, Rundel PW, Zelikova TJ (2019) Welcome to the Atta world: a framework for understanding the effects of leaf-cutter ants on ecosystem functions. Funct Ecol 33:1386–1399

  102. Trevelline BK, Sosa J, Hartup BK, Kohl KD (2020) A bird’s-eye view of phylosymbiosis: weak signatures of phylosymbiosis among all 15 species of cranes. Proc Royal Soc B: Biological Sciences 287:20192988

    Article  CAS  Google Scholar 

  103. White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR Protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  104. Worsley SF, Innocent TM, Holmes NA, Al-Bassam MM, Schiøtt M, Wilkinson B, Murrell JC, Boomsma JJ, Yu DW, Hutchings MI (2021) Competition-based screening helps to secure the evolutionary stability of a defensive microbiome. BMC Biol 19:205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Woyke T, Teeling H, Ivanova NN, Huntemann M, Richter M, Gloeckner FO, Boffelli D, Anderson IJ, Barry KW, Shapiro HJ, Szeto E, Kyrpides NC, Mussmann M, Amann R, Bergin C, Ruehland C, Rubin EM, Dubilier N (2006) Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 443:950–955

    Article  CAS  PubMed  Google Scholar 

  106. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glöckner FO (2014) The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res 42:D643–D648

    Article  CAS  PubMed  Google Scholar 

  107. Zaneveld JR, McMinds R, Vega Thurber R (2017) Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat Microbiol 2:17121

    Article  CAS  PubMed  Google Scholar 

  108. Zhukova M, Sapountzis P, Schiøtt M, Boomsma JJ (2017) Diversity and transmission of Gut Bacteria in Atta and Acromyrmex Leaf-Cutting Ants during Development. Front Microbiol 8:1942

Download references

Acknowledgements

We thank two anonymous reviewers, Joshua Banta, Neil Ford, and Kate Hertweck, for constructive criticisms on earlier drafts of this manuscript. Ant collections and fungal genotyping were assisted by Leighanna Mindt and Joseph Luiso. We also thank the participants of the Texas Ecolab program for allowing access to privately owned lands throughout Texas.

Funding

Funding was provided by the National Science Foundation IOS-1552822 to JNS and DEB-1354629 to KK). Additional funding and logistic support was provided by Texas Ecolab (https://texasecolabprogram.org/).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Mattea Allert, Blake Bringhurst, Matthew Greenwold, Katrin Kellner, and Jon Seal. The manuscript was written by Mattea Allert, Blake Bringhurst, and Jon Seal. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jon N. Seal.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 282 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bringhurst, B., Allert, M., Greenwold, M. et al. Environments and Hosts Structure the Bacterial Microbiomes of Fungus-Gardening Ants and their Symbiotic Fungus Gardens. Microb Ecol 86, 1374–1392 (2023). https://doi.org/10.1007/s00248-022-02138-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02138-x

Keywords

Navigation