Skip to main content

Advertisement

Log in

Fishing for the Microbiome of Tropical Tuna

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Although tunas represent a significant part of the global fish economy and a major nutritional resource worldwide, their microbiome still remains poorly documented. Here, we conducted an analysis of the taxonomic composition of the bacterial communities inhabiting the gut, skin, and liver of two most consumed tropical tuna species (skipjack and yellowfin), from individuals caught in the Atlantic and Indian oceans. We hypothesized that each organ harbors a specific microbial assemblage whose composition might vary according to different biotic (sex, species) and/or abiotic (environmental) factors. Our results revealed that the composition of the tuna microbiome was totally independent of fish sex, regardless of the species and ocean considered. Instead, the main determinants of observed diversity were (i) tuna species for the gut and (ii) sampling site for the skin mucus layer and (iii) a combination of both parameters for the liver. Interestingly, 4.5% of all amplicon sequence variants (ASV) were shared by the three organs, highlighting the presence of a core-microbiota whose most abundant representatives belonged to the genera Mycoplasma, Cutibacterium, and Photobacterium. Our study also revealed the presence of a unique and diversified bacterial assemblage within the tuna liver, comprising a substantial proportion of potential histamine-producing bacteria, well known for their pathogenicity and their contribution to fish poisoning cases. These results indicate that this organ is an unexplored microbial niche whose role in the health of both the host and consumers remains to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Egerton S, Culloty S, Whooley J, Stanton C, Ross RP (2018) The gut microbiota of marine fish. Front Microbiol 9:1–17

    Google Scholar 

  2. Legrand TPRA, Wynne JW, Weyrich LS, Oxley APA (2019) A microbial sea of possibilities : current knowledge and prospects for an improved understanding of the fish microbiome. Rev Aquac 12:1101–1134

    Google Scholar 

  3. Ross AA, Hoffmann AR, Neufeld JD (2019) The skin microbiome of vertebrates. Microbiome 7:79

    PubMed  PubMed Central  Google Scholar 

  4. Ruiz-Rodríguez M, Scheifler M, Sanchez-Brosseau S, Magnanou E, West N, Suzuki M et al (2020) Host species and body sites explain the variation in the microbiota associated to wild sympatric Mediterranean teleost fishes. Microbial Ecol 1–11.

  5. Parata L, Nielsen S, Xing X, Thomas T, Egan S (2019) Age, gut location and diet impact the gut microbiome of a tropical herbivorous surgeonfish. FEMS Microbiol Ecol 96:fiz179.

  6. Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Org E, Parks B et al (2014) Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat Commun. https://doi.org/10.1038/ncomms5500

    Article  PubMed  Google Scholar 

  7. Miyake S, Ngugo DK, Stingl U (2015) Diet strongly influences the gut microbiota of surgeonfishes. Mol Ecol 24:656–672

    PubMed  Google Scholar 

  8. Lokesh J, Kiron V (2016) Transition from freshwater to seawater reshapes the skin-associated microbiota of Atlantic. Sci Rep 6:19707

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Larsen AM, Bullard SA, Womble M, Arias CR (2015) Community structure of skin microbiome of gulf killifish, Fundulus grandis, is driven by seasonality and not exposure to oiled sediments in a Louisiana salt marsh. Microb Ecol 70:534–544

    CAS  PubMed  Google Scholar 

  10. Hooper R, Brealey JC, Van Der Valk T, Alberdi A, Durban JW, Fearnbach H et al (2019) Host - derived population genomics data provides insights into bacterial and diatom composition of the killer whale skin. Mol Ecol 28:484–502. https://doi.org/10.1111/mec.14860

    Article  PubMed  Google Scholar 

  11. Neuman C, Hatje E, Zarkasi KZ, Smullen R, Bowman JP, Katouli M (2016) The effect of diet and environmental temperature on the faecal microbiota of farmed Tasmanian Atlantic Salmon (Salmo salar L.). Aquac Res 47:660–72.

  12. Minich JJ, Petrus S, Michael JD, Michael TP, Knight R, Allen EE (2020) Temporal, environmental, and biological drivers of the mucosal microbiome in a wild marine fish, Scomber japonicus. Msphere 5.

  13. Tarnecki AM, Burgos FA, Ray CL, Arias CR (2017) Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics. J Appl Microbiol 123:2–17

    CAS  PubMed  Google Scholar 

  14. Chiarello M, Auguet J-C, Bettarel Y, Bouvier C, Claverie T, Graham NAJ et al (2018) Skin microbiome of coral reef fish is highly variable and driven by host phylogeny and diet. Microbiome 6:1–14

    Google Scholar 

  15. Pratte ZA, Besson M, Hollman RD, Stewart FJ (2018) The gills of reef fish support a distinct microbiome influenced by host-specific factors. Appl Environ Microbiol 84:1–15

    Google Scholar 

  16. Mitra V, Metcalf J (2012) Metabolic functions of the liver. Anaesth Intensive Care Med 13:54–55

    Google Scholar 

  17. Anhê FF, Anderschou B, Jensen H, Varin TV, Servant F, Van Blerk S et al (2020) Type 2 diabetes influences bacterial tissue compartmentalisation in human obesity. Nat Metab 2:233–242

    PubMed  Google Scholar 

  18. Yu L, Bajaj JS, Schwabe RF (2020) The gut microbiome and liver diseases. Liver: Biol Pathol 1062–8.

  19. Vaughn AR, Notay M, Clark AK, Sivamani RK (2017) Skin-gut axis: the relationship between intestinal bacteria and skin health. World J Dermatol 6:52–58

    Google Scholar 

  20. Adolph TE, Grander C, Moschen AR, Tilg H (2018) Liver – microbiome axis in health and disease. Trends Immunol 39:712–723

    CAS  PubMed  Google Scholar 

  21. Osadchiy V, Martin CR, Mayer EA (2019) The gut – brain axis and the microbiome : mechanisms and clinical implications. Clin Gastroenterol Hepatol 17:322–332

    CAS  PubMed  Google Scholar 

  22. Cryan JF, Riordan KJO, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M et al (2019) The microbiota-gut-brain axis. Physiol Rev 99:1877–2013

    CAS  PubMed  Google Scholar 

  23. Milosevic I, Vujovic A, Barac A, Djelic M, Korac M (2019) Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases : a review of the literature. Int J Mol Sci 20:395

    PubMed  PubMed Central  Google Scholar 

  24. Erauskin-Extramiana M, Arrizabalaga H, Hobday AJ, Cabré A, Ibaibarriaga L, Arregui I et al (2019) Large-scale distribution of tuna species in a warming ocean. Glob Change Biol 25:2043–2060

    Google Scholar 

  25. Guillotreau P, Squires D, Sun J, Compeán GA (2017) Local, regional and global markets: what drives the tuna fisheries ? Rev Fish Biol Fisheries 27:909–929

    Google Scholar 

  26. FAO (2018) The State of World Fisheries and Aquaculture 2018- Meeting the sustainable development goals.

  27. Hungerford JM (2010) Scombroid poisoning: a review. Toxicon 56:231–243

    CAS  PubMed  Google Scholar 

  28. Ruman A (2020) Scombroid fish poisoning. Proc UCLA Health 24

  29. Minich JJ, Power C, Melanson M, Knight R, Webber C, Rough K et al (2020) The Southern Bluefin Tuna mucosal microbiome is influenced by husbandry method, net pen location, and anti-parasite treatment. Front Microbiol 11:16

    Google Scholar 

  30. Zudaire I, Murua H, Grande M, Bodin N (2013) Reproductive potential of Yellowfin Tuna (Thunnus albacares) in the western Indian Ocean. FB 111:252–64.

  31. Grande M, Murua H, Zudaire I, Arsenault-Pernet EJ, Pernet F, Bodin N. (2016) Energy allocation strategy of skipjack tuna Katsuwonus pelamis during their reproductive cycle: lipid class dynamics in k. pelamis. J Fish Biol 89:2434–48.

  32. Bettarel Y, Halary S, Auguet JC, Mai TC, Van Bui N, Bouvier T et al (2018) Corallivory and the microbial debacle in two branching scleractinians. ISME J 12:1109–1126

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M et al (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41.

  34. Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, Nyrén P, Engstrand L (2008) Comparative analysis of Korean human gut microbiota by barcoded pyrosequencing. PLoS ONE 3:e2836

    PubMed  PubMed Central  Google Scholar 

  35. Perreault NN, Andersen DT, Pollard WH, Greer CW, Whyte LG (2007) Characterization of the prokaryotic diversity in cold saline perennial springs of the Canadian high arctic. Appl Environ Microbiol 73:1532–1543

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P et al (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596

    Google Scholar 

  38. McMurdie PJ, Holmes S (2013) phyloseq : an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8.

  39. Chen H, Boutros PC (2011) VennDiagram : a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinforma 12:1–7

    CAS  Google Scholar 

  40. Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ et al (2007) The vegan package. Community Ecol Packag

  41. Paradis E, Claude J, Strimmer K (2004) APE : analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    CAS  PubMed  Google Scholar 

  42. Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930

    Google Scholar 

  43. Bjornsdottir-Butler K, Abraham A, Harper A, Dunlap PV, Benner RA (2018) Biogenic amine production by and phylogenetic analysis of 23 Photobacterium species. J Food Prot 81:1264–1274

    CAS  PubMed  Google Scholar 

  44. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF et al (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12–87.

  45. Pecoraro C, Zudaire I, Bodin N, Murua H, Taconet P, Díaz-Jaimes P et al (2017) Putting all the pieces together : integrating current knowledge of the biology, ecology, fisheries status, stock structure and management of yellowfin tuna (Thunnus albacares). Rev Fish Biol Fisheries 27:811–841

    Google Scholar 

  46. Schaefer KM (2001) Reproductive biology of tunas. Fish Physiol 225–70.

  47. Varghese SP, Somvanshi VS (2016) Feeding ecology and consumption rates of yellowfin tuna Thunnus albacares (Bonnaterre, 1788) in the eastern Arabian Sea. Indian J Fish 63:16–26

    Google Scholar 

  48. Eveson JP, Million J, Sardenne F, Le Croizier G (2015) Estimating growth of tropical tunas in the Indian Ocean using tag-recapture data and otolith-based age estimates. Fish Res 163:58–68

    Google Scholar 

  49. Smith CCR, Snowberg LK, Caporaso JG, Knight R, Bolnick DI (2015) Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME J 9:2515–2526

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Webster TMU, Consuegra S, Hitchings M, De Leaniz C (2018) Interpopulation variation in the Atlantic salmon microbiome reflects environmental and genetic diversity. Appl Environ Microbiol 84:e00691-e718

    Google Scholar 

  51. Stéquert B, Nuñez J, Cuisset B, Le F (2001) Gonadosomatic index and seasonal variations of plasma sex steroids in skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares). Aquat Living Resour 14:313–318

    Google Scholar 

  52. Diaha NC, Zudaire I, Chassot E, Barrigah BD, Irié YD, Gbeazere DA et al (2016) Annual monitoring of reproductive traits of female yellowfin tuna (Thunnus albacares) in the eastern Atlantic ocean. Collect Vol Sci Pap ICCAT 72:534–548.

  53. Chiarello M, Villègier S, Bouvier C, Bettarel Y, Bouvier T (2015) High diversity of skin-associated bacterial communities of marine fishes is promoted by their high variability among body parts, individuals and species. FEMS Microbiol Ecol 91:1–12

    Google Scholar 

  54. Xavier R, Mazzei R, Pérez-Losada M, Rosado D, Santos JL, Veríssimo A et al (2019) A risky business ? Habitat and social behavior impact skin and gut microbiomes in Caribbean cleaning gobies. Front Microbiol 10:716

    PubMed  PubMed Central  Google Scholar 

  55. Uren Webster TM, Rodriguez-Barreto D, Castaldo G, Gough P, Consuegra S, Garcia de Leaniz C (2020) Environmental plasticity and colonisation history in the Atlantic salmon microbiome : a translocation experiment. Mol Ecol 29:886–98.

  56. Nguyen-Kim H, Bettarel Y, Bouvier T, Bouvier C, Doan-Nhu H, Nguyen-Ngoc L et al (2015) Coral mucus is a hot spot for viral infections. Appl Environ Microbiol 81:5773–5783

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Larsen A, Tao Z, Bullard SA, Arias CR (2013) Diversity of the skin microbiota of fishes: evidence for host species specificity. FEMS Microbiol Ecol 85:483–494

    CAS  PubMed  Google Scholar 

  58. Apprill A, Mooney TA, Lyman E, Stimpert AK, Rappé MS (2011) Humpback whales harbour a combination of specific and variable skin bacteria. Environ Microbiol Rep 3:223–232

    CAS  PubMed  Google Scholar 

  59. Jensen S, Øvreås L, Bergh Ø, Torsvik V (2004) Phylogenetic analysis of bacterial communities associated with larvae of the Atlantic halibut propose succession from a uniform normal flora. Syst Appl Microbiol 27:728–736

    CAS  PubMed  Google Scholar 

  60. Chiarello M, Villéger S, Bouvier C, Bettarel Y, Bouvier T (2015) High diversity of skin-associated bacterial communities of marine fishes is promoted by their high variability among body parts, individuals and species. FEMS Microbiol Ecol 91:fiv061.

  61. Ángeles EM (2012) An overview of the immunological defenses in fish skin. ISRN Immunology 2012:1–29

    Google Scholar 

  62. Reverter M, Tapissier-Bontemps N, Lecchini D, Banaigs B, Sasal P (2018) Biological and ecological roles of external fish mucus: a review. Fishes 3:41

    Google Scholar 

  63. Apprill A, Miller CA, Van Cise AM, U’Ren JM, Leslie MS, Weber L et al (2020) Marine mammal skin microbiotas are influenced by host phylogeny. Royal Soc Open Sci 7:192046

    CAS  Google Scholar 

  64. Graham JB, Dickson KA (2004) Tuna comparative physiology. Mar Biol 150:647–658

    Google Scholar 

  65. Schaefer KM, Fuller DW, Block BA (2009) Vertical movements and habitat utilization of skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares), and bigeye (Thunnus obesus) tunas in the equatorial eastern Pacific Ocean, ascertained through archival tag data. Tagging Tracking Mar Anim Electron Devices 121–44.

  66. Jaquemet S, Potier M, Ménard F (2011) Do drifting and anchored fish aggregating devices (FADs) similarly influence tuna feeding habits ? A case study from the western Indian Ocean. Fish Res 107:283–290

    Google Scholar 

  67. Ménard F, Stéquert B, Rubin A, Herrera M, Marchalb É (2000) Food consumption of tuna in the Equatorial Atlantic ocean: FAD-associated versus unassociated schools. Aquat Living Resour 13:233–240

    Google Scholar 

  68. Lim SJ, Bordenstein SR (2020) An introduction to phylosymbiosis. Proc R Soc B 287:20192900

    PubMed  PubMed Central  Google Scholar 

  69. Gadoin E, Durand L, Guillou A, Crochemore S, Bouvier T, Roque ER et al (2021) Does the composition of the gut bacteriome change during the growth of tuna? Microorganisms 9:1157

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Díaz-Arce N, Arrizabalaga H, Murua H, Irigoien X, Rodríguez-Ezpeleta N (2016) RAD-seq derived genome-wide nuclear markers resolve the phylogeny of tunas. Mol Phylogenet Evol 102:202–207

    PubMed  Google Scholar 

  71. Sullam KE, Essinger SD, Lozupone CA, O’Connor M, Rosen GL, Knight R et al (2012) Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol Ecol 21:3363–3378

    PubMed  Google Scholar 

  72. Sharpton TJ (2018) Role of the gut microbiome in vertebrate evolution. Msystems 3:1–5

    Google Scholar 

  73. Ely B, Viñas J, Bremer JRA, Black D, Lucas L, Covello K et al (2005) Population structure of two highly migratory cosmopolitan marine (Katsuwonus pelamis). BMC Evol Biol 5:19

    PubMed  PubMed Central  Google Scholar 

  74. Tilg H, Burcelin R, Tremaroli V (2020) Liver tissue microbiome in NAFLD: next step in understanding the gut–liver axis? Gut 69:1373–1374

    PubMed  Google Scholar 

  75. Albillos A, De GA, Rescigno M (2020) The gut-liver axis in liver disease: pathophysiological basis for therapy. J Hepatol 72:558–577

    CAS  PubMed  Google Scholar 

  76. Ding Y, Yanagi K, Cheng C, Alaniz RC, Lee K (2019) Interactions between gut microbiota and non-alcoholic liver disease: the role of microbiota-derived metabolites. Pharmacol Res 141:521–529

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Li B, Selmi C, Tang R, Gershwin ME, Ma X (2018) The microbiome and autoimmunity: a paradigm from the gut–liver axis. Cell Mol Immunol 15:595–609

    PubMed  PubMed Central  Google Scholar 

  78. Chakladar J, Wong LM, Kuo SZ, Li WT, Yu MA, Chang EY et al (2020) The liver microbiome is implicated in cancer prognosis and modulated by alcohol and hepatitis B. Cancers 12:1642

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim S-H, An H, Wei C-I, Visessanguan W, Benjakul S, Morrissey MT et al (2003) Molecular detection of a histamine former, Morganella morganii, in albacore, mackerel, sardine, and a processing plant. J Food Sci 68:453–457

    CAS  Google Scholar 

  80. Dang AT, Marsland BJ (2019) Microbes, metabolites, and the gut – lung axis. Mucosal Immunol 12:843–850

    CAS  PubMed  Google Scholar 

  81. Lee SY, Lee E, Park YM, Hong SJ (2018) Microbiome in the gut-skin axis in atopic dermatitis. Allergy, Asthma Immunol Res 10:354–362

    CAS  PubMed  Google Scholar 

  82. Sikora M, Stec A, Chrabaszcz M, Waskiel-Burnat A, Zaremba M, Olszewska M et al (2019) Intestinal fatty acid binding protein, a biomarker of intestinal barrier, is associated with severity of psoriasis. J Clin Med 8:1021

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Legrand TPRA, Catalano SR, Wos-oxley ML, Oxley APA, Costa R (2018) The inner workings of the outer surface : skin and gill microbiota as indicators of changing gut health in yellowtail kingfish. Front Microbiol 8:2664

    PubMed  PubMed Central  Google Scholar 

  84. Tsai Y-H, Kung H-F, Lee T-M, Lin G-T, Hwang D-F (2004) Histamine-related hygienic qualities and bacteria found in popular commercial scombroid fish fillets in Taiwan. J Food Prot 67:407–412

    CAS  PubMed  Google Scholar 

  85. Bermejo A, Mondaca MA, Roeckel M, Marti MC (2003) Growth and characterization of the histamine-forming bacteria of jack mackerel (Trachurus symmetricus). J Food Process Preserv 26:401–414

    Google Scholar 

  86. Chen HC, Lee YC, Hwang D-F, Chiou TK, Tsai YH (2011) Determination of histamine in mahi-mahi fillets (Coryphaena hippurus) implicated in a foodborne poisoning. J Food Saf 31:320–325

    CAS  Google Scholar 

  87. López-Sabater EI, Rodríguez-Jerez J, Hernández-Herrero M, Mora-Ventura MT (1996) Incidence of histamine-forming bacteria and histamine content in scombroid fish species from retail markets in the Barcelona area. Int J Food Microbiol 28:411–418

    PubMed  Google Scholar 

  88. Ferrario C, Pegollo C, Ricci G, Borgo F, Fortina MG (2012) PCR detection and identification of histamine-forming bacteria in filleted tuna fish samples. J Food Sci 77:M115–M120

    CAS  PubMed  Google Scholar 

  89. Koohdar V, Razavilar V, Kadivar A, Shaghayegh A (2012) Histamine-producing bacteria isolated from frozen longtail tuna (Thunnus tonggoh). Afr J Microbiol Res 6.

  90. Koohdar VA, Razavilar V, Motalebi AA, Mosakhani F, Valinassab T (2011) Isolation and identification of histamine-forming bacteria in frozen Skipjack tuna (Katsuwonus pelamis). Iranian J Fish Sci 10:678–688

    Google Scholar 

  91. Yoshinaga DH, Frank HA (1982) Histamine-producing bacteria in decomposing skipjack tuna (Katsuwonus pelamis). Appl Environ Microbiol 44:447–452

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lee Y-C, Lin C-M, Huang C-Y, Huang Y-L, Chen H-C, Huang T-C et al (2013) Determination and frying loss of histamine in striped marlin fillets implicated in a foodborne poisoning. J Food Prot 76:860–866

    CAS  PubMed  Google Scholar 

  93. Tsai Y-H, Chang S-C, Kung H-F, Wei C-I, Hwang D-F (2005) Histamine production by Enterobacter aerogenes in sailfish and milkfish at various storage temperatures. J Food Prot 68:1690–1695

    CAS  PubMed  Google Scholar 

  94. Kim S-H, Field KG, Morrissey MT, Price RJ, Wei C-I, An H (2001) Source and identification of histamine-producing bacteria from fresh and temperature-abused albacore. J Food Prot 64:1035–1044

    CAS  PubMed  Google Scholar 

  95. Rodtong S, Nawong S, Yongsawatdigul J (2005) Histamine accumulation and histamine-forming bacteria in Indian anchovy (Stolephorus indicus). Food Microbiol 22:475–482

    CAS  Google Scholar 

  96. Allen DG, Green DP, Bolton GE, Jaykus L-A, Cope WG (2005) Detection and identification of histamine-producing bacteria associated with harvesting and processing mahi-mahi and yellowfin tuna. J Food Prot 68:1676–1682

    CAS  PubMed  Google Scholar 

  97. Ferencik M (1970) Formation of histamine during bacterial decarboxylation of histidine in the flesh of some marine fishes. J Hyg Epidemiol Microbiol Immunol 14:52–60

    CAS  PubMed  Google Scholar 

  98. Taylor SL, Speckhard MW (1983) Isolation of histamine-producing bacteria from frozen tuna. Mar Fish Rev 45:35–39

    Google Scholar 

  99. Taylor SL, Speckhard MW (1984) Inhibition of bacterial histamine production by sorbate and other antimicrobial agents. J Food Prot 47:508–511

    CAS  PubMed  Google Scholar 

  100. Rodriguez-Jerez JJ, Lopez-Sabater EI, Roig-Sagues AX, Mora-Ventura MT (1994) Histamine, cadaverine and putrescine forming bacteria from ripened Spanish semi-preserved anchovies. J Food Sci 59:998–1001

    CAS  Google Scholar 

  101. Emborg J, Laursen BG, Dalgaard P (2005) Significant histamine formation in tuna (Thunnus albacares) at 2 °C—effect of vacuum- and modified atmosphere-packaging on psychrotolerant bacteria. Int J Food Microbiol 101:263–279

    CAS  PubMed  Google Scholar 

  102. Tao Z, Sato M, Yamaguchi T, Nakano T (2009) Formation and diffusion mechanism of histamine in the muscle of tuna fish. Food Control 20:923–926

    CAS  Google Scholar 

  103. Frank HA, Baranowski JD, Chongsiriwatana M, Brust PA, Premaratne RJ (1985) Identification and decarboxylase activities of bacteria isolated from decomposed mahi-mahi (Coryphaena hippurus) after incubation at 0 and 32 C. Int J Food Microbiol 2:331–340

    CAS  Google Scholar 

  104. Ababouch L, Afilal ME, Rhafiri S, Busta FF (1991) Identification of histamine-producing bacteria isolated from sardine (Sardina pilchardus) stored in ice and at ambient temperature (25 C). Food Microbiol 8:127–136

    Google Scholar 

  105. Emborg J, Dalgaard PAW (2006) Formation of histamine and biogenic amines in cold-smoked tuna: an investigation of psychrotolerant bacteria from samples implicated in cases of histamine fish poisoning. J Food Prot 69:897–906

    CAS  PubMed  Google Scholar 

  106. Dalgaard P, Madsen HL, Samieian N, Emborg J (2006) Biogenic amine formation and microbial spoilage in chilled garfish (Belone belone belone) - effect of modified atmosphere packaging and previous frozen storage. J Appl Microbiol 101:80–95

    CAS  PubMed  Google Scholar 

  107. Bjornsdottir-Butler K, McCarthy SA, Dunlap PV, Benner RA Jr (2016) Photobacterium angustum and Photobacterium kishitanii, psychrotrophic high-level histamine-producing bacteria indigenous to tuna. Appl Environ Microbiol 82:2167–2176

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Torido Y, Ohshima C, Takahashi H, Miya S, Iwakawa A, Kuda T et al (2014) Distribution of psychrophilic and mesophilic histamine-producing bacteria in retailed fish in Japan. Food Control 46:338–342

    CAS  Google Scholar 

  109. Trevisani M, Mancusi R, Cecchini M, Costanza C, Prearo M (2017) Detection and characterization of histamine-producing strains of Photobacterium damselae subsp. damselae isolated from mullets. Vet Sci 4:31.

  110. Ramesh A, Ananthalakshmy VK, Venugopalan VK (1989) Histamine production in Indian oil sardine and Indian mackerel by luminous bacteria. MIRCEN J Appl Microbiol Biotechnol 5:105–107

    CAS  Google Scholar 

  111. Morii H, Kasama K (2004) Activity of two histidine decarboxylases from Photobacterium phosphoreum at different temperatures, pHs, and NaCl Concentrations. J Food Prot 67:1736–1742

    CAS  PubMed  Google Scholar 

  112. Emborg J, Laursen BG, Rathjen T, Dalgaard P (2002) Microbial spoilage and formation of biogenic amines in fresh and thawed modified atmosphere-packed salmon (Salmo salar) at 2°C. J Appl Microbiol 92:790–799

    CAS  PubMed  Google Scholar 

  113. Ryser ET, Marth EH, Taylor SL (1984) Histamine production by psychrotrophic pseudomonads isolated from tuna fish. J Food Prot 47:378–380

    CAS  PubMed  Google Scholar 

  114. Kanki M, Yoda T, Tsukamoto T, Shibata T (2002) Klebsiella pneumoniae produces no histamine: Raoultella planticola and Raoultella ornithinolytica strains are histamine producers. Appl Environ Microbiol 68:3462–3466

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Montpellier University of Excellence (I-site MUSE; Project The MOME) and the JEAI MOSANE (IRD) program for their financial support. We are grateful to Justin Amendé, Nadège Kouadio, Philippe Cecchi, Aurélie Guillou, and the Reunion Fishing Club of Saint Gilles les Bains, for their assistance during sampling.

Funding

This project was funded by the Montpellier University of Excellence (MUSE, Project The MOME) and the EC2CO program (DIANE).

Author information

Authors and Affiliations

Authors

Contributions

B.Y. conceived and obtained the funding of this study. Sampling expeditions were performed by B.Y., G.E., B.T., and R.- O.E. G.E. performed all laboratory procedures and data analysis. G.E. and B.Y. wrote the first draft which was revised and discussed with D.C., A. J.-C., R.-O. E., B.T., M. J.-L, A.A., and D.L.

Corresponding author

Correspondence to Yvan Bettarel.

Ethics declarations

Ethics Approval

This is an observational study. The IRD Ethics Committee has confirmed that no ethical approval is required.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadoin, E., Desnues, C., d’Orbcastel, E.R. et al. Fishing for the Microbiome of Tropical Tuna. Microb Ecol 86, 742–755 (2023). https://doi.org/10.1007/s00248-022-02096-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02096-4

Keywords

Navigation