Skip to main content
Log in

Microbial Diversity on the Surface of Historical Monuments in Lingyan Temple, Jinan, China

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract 

Lingyan Temple is an important part of the World Heritage Mixed Property on Mount Taishan, in which numerous cultural heritage monuments, including exquisite painted arhat statues and inscriptions, display the ancient Chinese Buddhist culture. However, these monuments are suffering aesthetic and structural damage due to rich biofilms. In this study, the microbial communities colonized on historical monuments in different microenvironments were characterized through a combination of culture-dependent techniques and high-throughput sequencing. Microbial diversity was significantly different among the historical sites with different microenvironments. For example, Actinobacteria and Ascomycota were the core phyla in the indoor samples, while they were less abundant in the outdoor samples, and phototrophic microorganisms including Cyanobacteria and green algae were only dominant in the samples near springs. The results suggested that environmental factors such as water and airborne microorganisms may be the main causes influencing microbial distribution. Most of the identified dominant species were common on the historical monuments and could contribute to biodeterioration. This analysis of microbiota will provide further information on the biodeterioration processes and preservation strategies of cultural heritage monuments in Lingyan Temple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The raw data of microbial sequencing were deposited into the NCBI database (accession numbers: OL347246-OL347293, OL376627-OL376656, SAMN21502344, SAMN21502346, SAMN21502353, SAMN21502359, SAMN21502360, SAMN21502432, SAMN21502439, SAMN21502446, and SAMN21502447).

Code Availability

Not applicable.

References

  1. Scheerer S, Ortega-Morales O, Gaylarde C (2009) Chapter 5 Microbial deterioration of stone monuments-an updated overview, 1st ed. Elesvier Inc.

  2. Negi A, Sarethy IP (2019) Microbial biodeterioration of cultural heritage: events, colonization, and analyses. Microb Ecol 78:1014–1029. https://doi.org/10.1007/s00248-019-01366-y

    Article  Google Scholar 

  3. Pyzik A, Ciuchcinski K, Dziurzynski M, Dziewit L (2021) The bad and the good-microorganisms in cultural heritage environments-an update on biodeterioration and biotreatment approaches. Materials (Basel) 14:1–15. https://doi.org/10.3390/ma14010177

    Article  CAS  Google Scholar 

  4. Soares F, Portugal A, Trovão J et al (2019) Structural diversity of photoautotrophic populations within the UNESCO site ‘Old Cathedral of Coimbra’ (Portugal), using a combined approach. Int Biodeterior Biodegrad 140:9–20. https://doi.org/10.1016/j.ibiod.2019.03.009

    Article  Google Scholar 

  5. Macedo MF, Miller AZ, Dionísio A, Saiz-Jimenez C (2009) Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: an overview. Microbiology 155:3476–3490. https://doi.org/10.1099/mic.0.032508-0

    Article  CAS  Google Scholar 

  6. Gheorghe I, Sarbu L, Pecete I et al (2020) Multi-level characterization of microbial consortia involved in the biodeterioration of wooden and stone Romanian heritage churches. Conserv Sci Cult Herit 20:289–308. https://doi.org/10.6092/ISSN.1973-9494/12805

    Article  Google Scholar 

  7. Dakal TC, Cameotra SS (2012) Microbially induced deterioration of architectural heritages: routes and mechanisms involved. Environ Sci Eur 24:1–13. https://doi.org/10.1186/2190-4715-24-36

    Article  CAS  Google Scholar 

  8. Crispim CA, Gaylarde CC (2005) Cyanobacteria and biodeterioration of cultural heritage: a review. Microb Ecol 49:1–9. https://doi.org/10.1007/s00248-003-1052-5

    Article  CAS  Google Scholar 

  9. Sterflinger K, Piñar G (2013) Microbial deterioration of cultural heritage and works of art - tilting at windmills? Appl Microbiol Biotechnol 97:9637–9646. https://doi.org/10.1007/s00253-013-5283-1

    Article  CAS  Google Scholar 

  10. Stanaszek-Tomal E (2020) Environmental factors causing the development of microorganisms on the surfaces of national cultural monuments made of mineral building materials—review. Coatings 10:1–19. https://doi.org/10.3390/coatings10121203

    Article  CAS  Google Scholar 

  11. Petraretti M, Duffy KJ, Del Mondo A, et al (2021) Community composition and ex situ cultivation of fungi associated with UNESCO heritage monuments in the bay of Naples. Appl Sci 11https://doi.org/10.3390/app11104327

  12. Özdemir A, Erguven GO, Adar E, Nuhoglu Y (2020) Investigation on microbial biodeterioration of the stone monuments in Yildiz Technical University—Yildiz Campus—Istanbul—Turkey. Curr Microbiol. https://doi.org/10.1007/s00284-020-02171-4

    Article  Google Scholar 

  13. Owczarek-Kościelniak M, Krzewicka B, Piątek J, et al (2020) Is there a link between the biological colonization of the gravestone and its deterioration? Int Biodeterior Biodegrad 148https://doi.org/10.1016/j.ibiod.2019.104879

  14. Liu X, Koestler RJ, Warscheid T et al (2020) Microbial deterioration and sustainable conservation of stone monuments and buildings. Nat Sustain 3:991–1004. https://doi.org/10.1038/s41893-020-00602-5

    Article  Google Scholar 

  15. Li Q, Zhang B, He Z, Yang X (2016) Distribution and diversity of bacteria and fungi colonization in stone monuments analyzed by high-throughput sequencing. PLoS ONE 11:1–17. https://doi.org/10.1371/journal.pone.0163287

    Article  CAS  Google Scholar 

  16. Farooq M, Maknoon SD (2020) Biodeterioration of archaeological monuments of Taxila, Pakistan. Aerobiologia (Bologna) 36:375–385. https://doi.org/10.1007/s10453-020-09639-7

    Article  Google Scholar 

  17. Ortega-Morales O, Montero-Muñoz JL, Baptista Neto JA et al (2019) Deterioration and microbial colonization of cultural heritage stone buildings in polluted and unpolluted tropical and subtropical climates: a meta-analysis. Int Biodeterior Biodegrad 143:104734. https://doi.org/10.1016/j.ibiod.2019.104734

    Article  CAS  Google Scholar 

  18. Chen X, Bai F, Huang J et al (2021) The organisms on rock cultural heritages: growth and weathering. Geoheritage 13:56. https://doi.org/10.1007/s12371-021-00588-2

    Article  Google Scholar 

  19. Leplat J, François A, Bousta F (2020) Parengyodontium album, a frequently reported fungal species in the cultural heritage environment. Fungal Biol Rev 34:126–135. https://doi.org/10.1016/j.fbr.2020.06.002

    Article  Google Scholar 

  20. Rosado T, Dias L, Lança M et al (2020) Assessment of microbiota present on a Portuguese historical stone convent using high-throughput sequencing approaches. Microbiologyopen 9:1067–1084. https://doi.org/10.1002/mbo3.1030

    Article  CAS  Google Scholar 

  21. Li Q, Zhang B, Wang L, Ge Q (2017) Distribution and diversity of bacteria and fungi colonizing ancient Buddhist statues analyzed by high-throughput sequencing. Int Biodeterior Biodegrad 117:245–254. https://doi.org/10.1016/j.ibiod.2017.01.018

    Article  CAS  Google Scholar 

  22. Traversetti L, Bartoli F, Caneva G (2018) Wind-driven rain as a bioclimatic factor affecting the biological colonization at the archaeological site of Pompeii, Italy. Int Biodeterior Biodegrad 134:31–38. https://doi.org/10.1016/j.ibiod.2018.07.016

    Article  Google Scholar 

  23. Liu X, Meng H, Wang Y et al (2018) Water is a critical factor in evaluating and assessing microbial colonization and destruction of Angkor sandstone monuments. Int Biodeterior Biodegrad 133:9–16. https://doi.org/10.1016/j.ibiod.2018.05.011

    Article  CAS  Google Scholar 

  24. Nir I, Barak H, Kramarsky-Winter E, Kushmaro A (2019) Seasonal diversity of the bacterial communities associated with petroglyphs sites from the Negev Desert, Israel. Ann Microbiol 69:1079–1086. https://doi.org/10.1007/s13213-019-01509-z

    Article  Google Scholar 

  25. Duan Y, Wu F, He D et al (2021) Bacterial and fungal communities in the sandstone biofilms of two famous Buddhist grottoes in China. Int Biodeterior Biodegrad 163:105267. https://doi.org/10.1016/j.ibiod.2021.105267

    Article  CAS  Google Scholar 

  26. Ding X, Lan W, Yan A et al (2022) Microbiome characteristics and the key biochemical reactions identified on stone world cultural heritage under different climate conditions. J Environ Manage 302:114041. https://doi.org/10.1016/j.jenvman.2021.114041

    Article  CAS  Google Scholar 

  27. He D, Wu F, Ma W et al (2021) Insights into the bacterial and fungal communities and microbiome that causes a microbe outbreak on ancient wall paintings in the Maijishan Grottoes. Int Biodeterior Biodegrad 163:105250. https://doi.org/10.1016/j.ibiod.2021.105250

    Article  CAS  Google Scholar 

  28. Pinheiro AC, Mesquita N, Trovão J et al (2019) Limestone biodeterioration: a review on the Portuguese cultural heritage scenario. J Cult Herit 36:275–285. https://doi.org/10.1016/j.culher.2018.07.008

    Article  Google Scholar 

  29. Schröer L, De Kock T, Cnudde V, Boon N (2020) Differential colonization of microbial communities inhabiting Lede stone in the urban and rural environment. Sci Total Environ 733:139339. https://doi.org/10.1016/j.scitotenv.2020.139339

    Article  CAS  Google Scholar 

  30. Prussin AJ, Marr LC (2015) Sources of airborne microorganisms in the built environment. Microbiome 3:78. https://doi.org/10.1186/s40168-015-0144-z

    Article  Google Scholar 

  31. Pyrri I, Tripyla E, Zalachori A et al (2020) Fungal contaminants of indoor air in the National Library of Greece. Aerobiologia (Bologna) 36:387–400. https://doi.org/10.1007/s10453-020-09640-0

    Article  Google Scholar 

  32. Leplat J, François A, Touron S et al (2020) Aerobiological behavior of Paleolithic rock art sites in Dordogne (France): a comparative study in protected sites ranging from rock shelters to caves, with and without public access. Aerobiologia (Bologna) 36:355–374. https://doi.org/10.1007/s10453-020-09637-9

    Article  Google Scholar 

  33. Després VR, Alex Huffman J, Burrows SM, et al (2012) Primary biological aerosol particles in the atmosphere: a review. Tellus, Ser B Chem Phys Meteorol 64https://doi.org/10.3402/tellusb.v64i0.15598

  34. Trovão J, Portugal A, Soares F et al (2019) Fungal diversity and distribution across distinct biodeterioration phenomena in limestone walls of the old cathedral of Coimbra, UNESCO World Heritage Site. Int Biodeterior Biodegrad 142:91–102. https://doi.org/10.1016/j.ibiod.2019.05.008

    Article  Google Scholar 

  35. Ogawa A, Celikkol-Aydin S, Gaylarde C et al (2017) Microbiomes of biofilms on decorative siliceous stone: drawbacks and advantages of next generation sequencing. Curr Microbiol 74:848–853. https://doi.org/10.1007/s00284-017-1257-3

    Article  CAS  Google Scholar 

  36. Fuentes E, Carballeira R, Prieto B (2021) Role of exposure on the microbial consortiums on historical rural granite buildings. Appl Sci 11https://doi.org/10.3390/app11093786

  37. Santo AP, Cuzman OA, Petrocchi D, et al (2021) Black on white: microbial growth darkens the external marble of florence cathedral. Appl Sci 11https://doi.org/10.3390/app11136163

  38. Meng H, Zhang X, Katayama Y et al (2020) Microbial diversity and composition of the Preah Vihear temple in Cambodia by high-throughput sequencing based on genomic DNA and RNA. Int Biodeterior Biodegrad 149:104936. https://doi.org/10.1016/j.ibiod.2020.104936

    Article  CAS  Google Scholar 

  39. Meena B, Rajan LA, Vinithkumar NV, Kirubagaran R (2013) Novel marine actinobacteria from emerald Andaman & Nicobar Islands: a prospective source for industrial and pharmaceutical byproducts. BMC Microbiol 13:1–17. https://doi.org/10.1186/1471-2180-13-145

    Article  CAS  Google Scholar 

  40. Nitiu DS, Mallo AC, Saparrat MCN (2020) Fungal melanins that deteriorate paper cultural heritage: an overview. Mycologia 112:859–870. https://doi.org/10.1080/00275514.2020.1788846

    Article  CAS  Google Scholar 

  41. Mazzoli R, Giuffrida MG, Pessione E (2018) Back to the past: “find the guilty bug—microorganisms involved in the biodeterioration of archeological and historical artifacts.” Appl Microbiol Biotechnol 102:6393–6407. https://doi.org/10.1007/s00253-018-9113-3

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the China Postdoctoral Science Foundation (2019M662390), the Shandong Provincial Natural Science Foundation, China (ZR2020QC045), and the National Social Science Fund of China (18ZDA221).

Author information

Authors and Affiliations

Authors

Contributions

Youzhen Cai collected the samples. Tianxiao Li performed the experiments and analyzed the data. Youzhen Cai, Tianxiao Li, and Qinglin Ma wrote and participated to the revision of the manuscript.

Corresponding authors

Correspondence to Tianxiao Li or Qinglin Ma.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1042 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Cai, Y. & Ma, Q. Microbial Diversity on the Surface of Historical Monuments in Lingyan Temple, Jinan, China. Microb Ecol 85, 76–86 (2023). https://doi.org/10.1007/s00248-021-01955-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01955-w

Keywords

Navigation