Skip to main content
Log in

The Diversity of Viral Community in Invasive Fruit Flies (Bactrocera and Zeugodacus) Revealed by Meta-transcriptomics

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

RNA viruses are extremely diverse and rapidly evolving in various organisms. Our knowledge on viral evolution with interacted hosts in the manner of ecology is still limited. In the agricultural ecosystem, invasive insect species are posing a great threat to sustainable crop production. Among them, fruit flies (Diptera: Tephritidae Bactrocera and Zeugodacus) are destructive to fruits and vegetables, which are also closely related and often share similar ecological niches. Thus, they are ideal models for investigating RNA virome dynamics in host species. Using meta-transcriptomics, we found 39 viral sequences in samples from 12 fly species. These viral species represented the diversity of the viromes including Dicistroviridae, negev-like virus clades, Thika virus clades, Solemoviridae, Narnaviridae, Nodaviridae, Iflaviridae, Orthomyxoviridae, Bunyavirales, Partitiviridae, and Reoviridae. In particular, dicistrovirus, negev-like virus, orthomyxovirus, and orbivirus were common in over four of the fly species, which suggests a positive interaction between fly viromes that exist under the same ecological conditions. For most of the viruses, the virus-derived small RNAs displayed significantly high peaks in 21 nt and were symmetrically distributed throughout the viral genome. These results suggest that infection by these viruses can activate the host’s RNAi immunity. Our study provides RNA virome diversity and evidence on their infection activity in ecologically associated invasive fruit fly species, which could help our understanding of interactions between complex species and viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyses during the current study are available in the NCBI.

References

  1. Clarke AR, Armstrong KF, Carmichael AE, Milne JR, Raghu S, Roderick GK, Yeates DK (2005) Invasive phytophagous pests arising through a recent tropical evolutionary radiation: the Bactrocera dorsalis complex of fruit flies. Annu. Rev. Entomol. 50:293–319. https://doi.org/10.1146/annurev.ento.50.071803.130428

    Article  CAS  PubMed  Google Scholar 

  2. McQuate GT, Liquido NJ, Nakamichi KAA (2017) Annotated world bibliography of host plants of the melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Insecta. Mundi. 527:1–340

    Google Scholar 

  3. Virgilio M, Jordaens K, Verwimp C, White IM, De Meyer M (2015) Higher phylogeny of frugivorous flies (Diptera, Tephritidae, Dacini): localised partition conflicts and a novel generic classification. Mol. Phylogenet. Evol. 85:171–179. https://doi.org/10.1016/j.ympev.2015.01.007

    Article  PubMed  Google Scholar 

  4. Smith PT, Kambhampati S, Armstrong KA (2003) Phylogenetic relationships among Bactrocera species (Diptera : Tephritidae) inferred from mitochondrial DNA sequences. Mol. Phylogenet. Evol. 26(1):8–17. https://doi.org/10.1016/S1055-7903(02)00293-2

    Article  CAS  PubMed  Google Scholar 

  5. Duyck P-F, David P, Quilici S (2004) A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae). Ecological. Entomol. 29(5):511–520. https://doi.org/10.1111/j.0307-6946.2004.00638.x

    Article  Google Scholar 

  6. Ovruski SM, Schliserman P (2012) Biological control of tephritid fruit flies in argentina: historical review, current status, and future trends for developing a parasitoid mass-release program. Insects 3(3):870–888. https://doi.org/10.3390/insects3030870

    Article  PubMed  PubMed Central  Google Scholar 

  7. Novella IS, Presloid JB, Taylor RT (2014) RNA replication errors and the evolution of virus pathogenicity and virulence. Current. Opinion. Virol. 9:143–147. https://doi.org/10.1016/j.coviro.2014.09.017

    Article  CAS  Google Scholar 

  8. Zhang YZ, Shi M, Holmes EC (2018) Using metagenomics to characterize an expanding virosphere. Cell 172(6):1168–1172. https://doi.org/10.1016/j.cell.2018.02.043

    Article  CAS  PubMed  Google Scholar 

  9. Shi M, Lin XD, Tian JH, Chen LJ, Chen X, Li CX, Qin XC, Li J, Cao JP, Eden JS, Buchmann J, Wang W, Xu J, Holmes EC, Zhang YZ (2016) Redefining the invertebrate RNA virosphere. Nature 540(7634):539–543. https://doi.org/10.1038/nature20167

    Article  CAS  PubMed  Google Scholar 

  10. Ruckert C, Ebel GD (2018) How do virus-mosquito interactions lead to viral emergence? Trends Parasitol. 34(4):310–321. https://doi.org/10.1016/j.pt.2017.12.004

    Article  PubMed  PubMed Central  Google Scholar 

  11. Whitfield AE, Falk BW, Rotenberg D (2015) Insect vector-mediated transmission of plant viruses. Virology 479-480:278–289. https://doi.org/10.1016/j.virol.2015.03.026

    Article  CAS  PubMed  Google Scholar 

  12. Shi M, Lin XD, Chen X, Tian JH, Chen LJ, Li K, Wang W, Eden JS, Shen JJ, Liu L, Holmes EC, Zhang YZ (2018) The evolutionary history of vertebrate RNA viruses. Nature 556(7700):197–202. https://doi.org/10.1038/s41586-018-0012-7

    Article  CAS  PubMed  Google Scholar 

  13. Wu H, Pang R, Cheng T, Xue L, Zeng H, Lei T, Chen M, Wu S, Ding Y, Zhang J, Shi M, Wu Q (2020) Abundant and diverse RNA viruses in insects revealed by RNA-Seq analysis: ecological and evolutionary implications. mSystems 5(4) e00039-00020. https://doi.org/10.1128/mSystems.00039-20

  14. Ott Rutar S, Kordis D (2020) Analysis of the RNA virome of basal hexapods. PeerJ 8:e8336. https://doi.org/10.7717/peerj.8336

    Article  PubMed  PubMed Central  Google Scholar 

  15. Feng Y, Krueger EN, Liu S, Dorman K, Bonning BC, Miller WA (2017) Discovery of known and novel viral genomes in soybean aphid by deep sequencing. Phytobiomes. J. 1(1):36–45. https://doi.org/10.1094/pbiomes-11-16-0013-r

    Article  Google Scholar 

  16. Nouri S, Salem N, Nigg JC, Falk BW (2015) Diverse array of new viral sequences identified in worldwide populations of the Asian Citrus Psyllid (Diaphorina citri) using viral metagenomics. J. Virol. 90(5):2434–2445. https://doi.org/10.1128/JVI.02793-15

    Article  CAS  PubMed  Google Scholar 

  17. Zhang W, Gu Q, Niu J, Wang JJ (2020) The RNA virome and its dynamics in an invasive fruit fly, Bactrocera dorsalis, imply interactions between host and viruses. Microb. Ecol. 80(2):423–434. https://doi.org/10.1007/s00248-020-01506-9

    Article  CAS  PubMed  Google Scholar 

  18. Zhang W, Wu T, Guo M, Chang T, Yang L, Tan Y, Ye C, Niu J, Wang JJ (2019) Characterization of a new bunyavirus and its derived small RNAs in the brown citrus aphid, Aphis citricidus. Virus Genes 55(4):557–561. https://doi.org/10.1007/s11262-019-01667-x

    Article  CAS  PubMed  Google Scholar 

  19. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12(1):59–60. https://doi.org/10.1038/nmeth.3176

    Article  CAS  PubMed  Google Scholar 

  21. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Watson M, Schnettler E, Kohl A (2013) viRome: an R package for the visualization and analysis of viral small RNA sequence datasets. Bioinformatics 29(15):1902–1903. https://doi.org/10.1093/bioinformatics/btt297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res. 43(Database issue):D257–D260. https://doi.org/10.1093/nar/gku949

    Article  CAS  PubMed  Google Scholar 

  24. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32(1):268–274. https://doi.org/10.1093/molbev/msu300

    Article  CAS  PubMed  Google Scholar 

  25. Contigiani MS, Diaz LA, Tauro LB (2017) Bunyaviruses. In: Marcondes CB (ed) Arthropod Borne Diseases. Springer International Publishing, Cham, pp 137–154. https://doi.org/10.1007/978-3-319-13884-8_10

    Chapter  Google Scholar 

  26. Grybchuk D, Akopyants NS, Kostygov AY, Konovalovas A, Lye LF, Dobson DE, Zangger H, Fasel N, Butenko A, Frolov AO, Votypka J, d’Avila-Levy CM, Kulich P, Moravcova J, Plevka P, Rogozin IB, Serva S, Lukes J, Beverley SM, Yurchenko V (2018) Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania. Proc. Natl. Acad. Sci. U. S. A. 115(3):E506–E515. https://doi.org/10.1073/pnas.1717806115

    Article  CAS  PubMed  Google Scholar 

  27. Leggewie M, Schnettler E (2018) RNAi-mediated antiviral immunity in insects and their possible application. Current. Opinion. Virol. 32:108–114. https://doi.org/10.1016/j.coviro.2018.10.004

    Article  CAS  Google Scholar 

  28. Hillman BI, Cai GH (2013) The family Narnaviridae: simplest of RNA viruses. Adv. Virus Res., Vol 86: Mycoviruses 86:149–176. https://doi.org/10.1016/B978-0-12-394315-6.00006-4

    Article  PubMed  Google Scholar 

  29. Ding SW, Lu R (2011) Virus-derived siRNAs and piRNAs in immunity and pathogenesis. Current. Opinion. Virol. 1(6):533–544. https://doi.org/10.1016/j.coviro.2011.10.028

    Article  CAS  Google Scholar 

  30. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363–366. https://doi.org/10.1038/35053110

    Article  CAS  PubMed  Google Scholar 

  31. Okamura K, Balla S, Martin R, Liu N, Lai EC (2008) Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster. Nat. Struct. Mol. Biol. 15(6):581–590. https://doi.org/10.1038/nsmb.1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ghildiyal M, Seitz H, Horwich MD, Li C, Du T, Lee S, Xu J, Kittler EL, Zapp ML, Weng Z, Zamore PD (2008) Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320(5879):1077–1081. https://doi.org/10.1126/science.1157396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yurchenko V, Votypka J, Tesarova M, Klepetkova H, Kraeva N, Jirku M, Lukes J (2014) Ultrastructure and molecular phylogeny of four new species of monoxenous trypanosomatids from flies (Diptera: Brachycera) with redefinition of the genus Wallaceina. Folia Parasitol. 61(2):97–112. https://doi.org/10.14411/fp.2014.023

    Article  CAS  Google Scholar 

  34. Atayde VD, Shi H, Franklin JB, Carriero N, Notton T, Lye LF, Owens K, Beverley SM, Tschudi C, Ullu E (2013) The structure and repertoire of small interfering RNAs in Leishmania (Viannia) braziliensis reveal diversification in the trypanosomatid RNAi pathway. Mol. Microbiol. 87(3):580–593. https://doi.org/10.1111/mmi.12117

    Article  CAS  PubMed  Google Scholar 

  35. Sharp PM, Simmonds P (2011) Evaluating the evidence for virus/host co-evolution. Current. Opinion. Virol. 1(5):436–441. https://doi.org/10.1016/j.coviro.2011.10.018

    Article  Google Scholar 

  36. Longdon B, Brockhurst MA, Russell CA, Welch JJ, Jiggins FM (2014) The evolution and genetics of virus host shifts. PLoS Pathog. 10(11):e1004395. https://doi.org/10.1371/journal.ppat.1004395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Webster CL, Longdon B, Lewis SH, Obbard DJ (2016) Twenty-five new viruses associated with the Drosophilidae (Diptera). Evol. Bioinforma. 12(Suppl 2):13–25. https://doi.org/10.4137/EBO.S39454

    Article  CAS  Google Scholar 

  38. Xu P, Yang L, Yang X, Li T, Graham RI, Wu K, Wilson K (2020) Novel partiti-like viruses are conditional mutualistic symbionts in their normal lepidopteran host, African armyworm, but parasitic in a novel host, Fall armyworm. PLoS Pathog. 16(6):e1008467. https://doi.org/10.1371/journal.ppat.1008467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang F, Fang Q, Wang B, Yan Z, Hong J, Bao Y, Kuhn JH, Werren JH, Song Q, Ye G (2017) A novel negative-stranded RNA virus mediates sex ratio in its parasitoid host. PLoS Pathog. 13(3):e1006201. https://doi.org/10.1371/journal.ppat.1006201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu H, Zhu J, Yu J, Chen X, Kang L, Cui F (2020) A symbiotic virus facilitates aphid adaptation to host plants by suppressing jasmonic acid responses. Mol. Plant-Microbe Interact. 33(1):55–65. https://doi.org/10.1094/MPMI-01-19-0016-R

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Cao Jun (Yunnan University) for providing the samples of Bactrocera correcta.

Funding

The authors received support from the National Key R&D Program of China (2019YFD1002100), National Natural Science Foundation of China (31701846), earmarked fund for Modern Agro-industry (Citrus) Technology Research System of China (CARS-26), and 111 Project (B18044).

Author information

Authors and Affiliations

Authors

Contributions

WZ, JN, and JW designed the study. The experiments are performed by WZ, YZ, ZW, and QG. WZ, YZ, ZW, and QG analyzed the data. WZ wrote the initial draft. JN and JW edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jin-Jun Wang.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

ESM 1

(DOCX 9133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhang, YC., Wang, ZG. et al. The Diversity of Viral Community in Invasive Fruit Flies (Bactrocera and Zeugodacus) Revealed by Meta-transcriptomics. Microb Ecol 83, 739–752 (2022). https://doi.org/10.1007/s00248-021-01790-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01790-z

Keywords

Navigation