Skip to main content
Log in

Environmental Temperature, but Not Male Age, Affects Wolbachia and Prophage WO Thereby Modulating Cytoplasmic Incompatibility in the Parasitoid Wasp, Habrobracon Hebetor

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Wolbachia is an endosymbiotic bacterium found in many species of arthropods and manipulates its host reproduction. Cytoplasmic incompatibility (CI) is one of the most common manipulations that is induced when an uninfected female mates with a Wolbachia-infected male. The CI factors (cifA and cifB genes) are encoded by phage WO that naturally infects Wolbachia. Here, we questioned whether an environmental factor (temperature) or host factor (male age) affected the strength of the CI phenotype in the ectoparasitoid wasp, Habrobracon hebetor. We found that temperature, but not male age, results in reduced CI penetrance. Consistent with these results, we also found that the expression of the cif CI factors decreased in temperature-exposed males but was consistent across aging male wasps. Similar to studies of other insect systems, cifA showed a higher expression level than cifB, and male hosts showed increased cif expression relative to females. Our results suggest that prophage WO is present in the Wolbachia-infected wasps and expression of cif genes contributes to the induction of CI in this insect. It seems that male aging has no effect on the intensity of CI; however, temperature affects Wolbachia and prophage WO titers as well as expression levels of cif genes, which modulate the CI level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable

References

  1. Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Microbiol 6:741–751. https://doi.org/10.1038/nrmicro1969

    Article  CAS  Google Scholar 

  2. Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstädter J, Hurst GD (2008) The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol 6:1–12. https://doi.org/10.1186/1741-7007-6-27

    Article  CAS  Google Scholar 

  3. Breeuwer JA, Werren JH (1990) Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 346:558–560. https://doi.org/10.1038/346558a0

    Article  CAS  PubMed  Google Scholar 

  4. O’Neill SL, Karr TL (1990) Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature 348:178–180. https://doi.org/10.1038/348178a0

    Article  CAS  PubMed  Google Scholar 

  5. Hoffmann AA, Turelli M, Harshman LG (1990) Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics 126:933–948

    Article  CAS  Google Scholar 

  6. Turelli M (1994) Evolution of incompatibility-inducing microbes and their hosts. Evolution 48:1500–1513. https://doi.org/10.2307/2410244

    Article  PubMed  Google Scholar 

  7. Yen JH, Barr AR (1971) New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 232:657–658. https://doi.org/10.1038/232657a0

    Article  CAS  PubMed  Google Scholar 

  8. Holden PR, Jones P, Brookfield JF (1993) Evidence for a Wolbachia symbiont in Drosophila melanogaster. Genet Res 62:23–29. https://doi.org/10.1017/s00166723000315229

    Article  CAS  PubMed  Google Scholar 

  9. Werren JH, Loehlin DW (2009) Curing Wolbachia infections in Nasonia (parasitoid wasp), Cold Spring Harb Protoc. Pdb-prot5312. https://doi.org/10.1101/pdb.prot5312

  10. Engelstädter J, Telschow A (2009) Cytoplasmic incompatibility and host population structure. Heredity 103:196–207. https://doi.org/10.1038/hdy.2009.53

    Article  PubMed  Google Scholar 

  11. Stouthamer R, Breeuwer JAJ, Luck RF, Werren JH (1993) Molecular identification of microorganisms associated with parthenogenesis. Nature 361:66–68. https://doi.org/10.1038/361066a0

    Article  CAS  PubMed  Google Scholar 

  12. Hurst GDD, von der Schulenburg JG, Majerus TMO, Bertrand D, Zakharov IA, Baungaard, J, ..., Majerus MEN (1999) Invasion of one insect species, Adalia bipunctata, by two different male‐killing bacteria. Insect Mol Biol 8:133-139. https://doi.org/10.1046/j.1365-2583.1999.810133x16

  13. Rousset F, Bouchon D, Pintureau B, Juchault P, Solignac M (1992) Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc R Soc Lond Ser B Biol Sci 250:91–98. https://doi.org/10.1098/rspb.1992.0135

    Article  CAS  Google Scholar 

  14. Dobson SL, Rattanadechakul W, Marsland EJ (2004) Fitness advantage and cytoplasmic incompatibility in Wolbachia single-and superinfected Aedes albopictus. Heredity 93:135–142. https://doi.org/10.1038/sj.hdy.6800458

    Article  CAS  PubMed  Google Scholar 

  15. LePage DP, Metcalf JA, Bordenstein SR, On J, Perlmutter JI, Shropshire JD, ..., Bordenstein SR (2017) Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543: 243-247. https://doi.org/10.1038/nature21391

  16. Shropshire JD, On J, Layton EM, Zhou H, Bordenstein SR (2018) One prophage WO gene rescues cytoplasmic incompatibility in Drosophila melanogaster. Proc Natl Acad Sci 115:4987–4991. https://doi.org/10.1073/pnas.1800650115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shropshire JD, Bordenstein SR (2019) Two-by-one model of cytoplasmic incompatibility: synthetic recapitulation by transgenic expression of cifA and cifB in Drosophila. PLoS Genet 15:e1008221. https://doi.org/10.1371/journal.pgen.1008221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shropshire JD, Rosenberg R, Bordenstein SR (2021) The impacts of cytoplasmic incompatibility factor (cifA and cifB) genetic variation on phenotypes. Genetics 217:iyaa007. https://doi.org/10.1093/genetics/iyaa007

    Article  Google Scholar 

  19. Endersby-Harshman NM, Axford JK, Hoffmann AA (2019) Environmental concentrations of antibiotics may diminish Wolbachia infections in Aedes aegypti (Diptera: Culicidae). J Med Entomol 56:1078–1086. https://doi.org/10.1093/jme/tjz023

    Article  CAS  PubMed  Google Scholar 

  20. Wu K, Hoy MA (2012) Extended starvation reduced and eliminated Wolbachia, but not Cardinium, from Metaseiulus occidentalis females (Acari: Phytoseiidae): A need to reassess Wolbachia’s status in this predatory mite? J Invertebr Pathol 109:20–26. https://doi.org/10.1016/j.jip.2011.09.005

    Article  PubMed  Google Scholar 

  21. Clancy DJ, Hoffmann AA (1998) Environmental effects on cytoplasmic incompatibility and bacterial load in Wolbachia-infected Drosophila simulans. Entomol Exp Appl 86:13–24. https://doi.org/10.1023/a:1003043814761

    Article  Google Scholar 

  22. Dutton TJ, Sinkins SP (2004) Strain-specific quantification of Wolbachia density in Aedes albopictus and effects of larval rearing conditions. Insect Mol Biol 13:317–322. https://doi.org/10.1111/j.0962-1075.2004.00490.x

    Article  CAS  PubMed  Google Scholar 

  23. Reynolds KT, Hoffmann AA (2002) Male age, host effects and the weak expression or non-expression of cytoplasmic incompatibility in Drosophila strains infected by maternally transmitted Wolbachia. Genet Res 80:79–87. https://doi.org/10.1017/S0016672302005827

    Article  PubMed  Google Scholar 

  24. Bordenstein SR, Bordenstein SR (2011) Temperature affects the tripartite interactions between bacteriophage WO, Wolbachia, and cytoplasmic incompatibility. PLoS One 6:e29106. https://doi.org/10.1371/journal.pone.0029106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mouton L, Henri H, Bouletreau M, Vavre F (2006) Effect of temperature on Wolbachia density and impact on cytoplasmic incompatibility. Parasitology 132:49. https://doi.org/10.1017/S0031182005008723

    Article  CAS  PubMed  Google Scholar 

  26. Bordenstein SR, Marshall ML, Fry AJ, Kim U, Wernegreen JJ (2006) The tripartite associations between bacteriophage, Wolbachia, and arthropods. PLoS Pathog 2:e43. https://doi.org/10.1371/journal.ppat.0020043

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ghimire MN (2008) Reproductive performance of the Parasitoid Bracon hebetor Say (Hymenoptera: Braconidae) on various host species of Lepidoptera(Doctoral dissertation, Oklahoma State University)

  28. Bagheri Z, Talebi AA, Asgari S, Mehrabadi M (2019a) Wolbachia induce cytoplasmic incompatibility and affect mate preference in Habrobracon hebetor to increase the chance of its transmission to the next generation. J Invertebr Pathol 163:1–7. https://doi.org/10.1016/j.jip.2019.02.005

    Article  PubMed  Google Scholar 

  29. Kageyama D, Narita S, Imamura T, Miyanoshita A (2010) Detection and identification of Wolbachia endosymbionts from laboratory stocks of stored-product insect pests and their parasitoids. J Stored Prod Res 46:13–19. https://doi.org/10.1016/j.jspr.2009.07.003

    Article  CAS  Google Scholar 

  30. Fleming VM (2006) Population analyses of bacteria/host interactions. Dissertation, University of Bath (United Kingdom)

  31. O’Neill SL, Giordano R, Colbert AM, Karr TL, Robertson HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci 89:2699–2702. https://doi.org/10.1073/pnas.89.7.2699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Narita S, Nomura M, Kageyama D (2007) Naturally occurring single and double infection with Wolbachia strains in the butterfly Eurema hecabe: transmission efficiencies and population density dynamics of each Wolbachia strain. FEMS Microbiol Ecol 61:235–245. https://doi.org/10.1111/j.1574-6941.2007.0033.x

    Article  CAS  PubMed  Google Scholar 

  33. Fujii Y, Kubo T, Ishikawa H, Sasaki T (2004) Isolation and characterization of the bacteriophage WO from Wolbachia, an arthropod endosymbiont. Biochem Biophys Res Commun 317:1183–1188. https://doi.org/10.1016/j.bbrc.2004.03.164

    Article  CAS  PubMed  Google Scholar 

  34. Karamipour N, Fathipour MM (2016) Gammaproteobacteria as essential primary symbionts in the striped shield bug, Graphosoma lineatum (Hemiptera: Pentatomidae). Sci Rep 6:33168. https://doi.org/10.1038/srep33168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  36. Lindsey AR, Rice DW, Bordenstein SR, Brooks AW, Bordenstein SR, Newton IL (2018) Evolutionary genetics of cytoplasmic incompatibility genes cifA and cifB in prophage WO of Wolbachia. Genome Biol Evol 10:434–451. https://doi.org/10.1093/gbe/evy012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Correa CC, Ballard JWO (2016) Wolbachia associations with insects: winning or losing against a master manipulator. Fron Ecol Evol 3:153. https://doi.org/10.3389/fevo.2015.00153

    Article  Google Scholar 

  38. Masui S, Kamoda S, Sasaki T, Ishikawa H (2000) Distribution and evolution of bacteriophage WO in Wolbachia, the endosymbiont causing sexual alterations in arthropods. J Mol Evol 51:491–497. https://doi.org/10.1007/s002390010112

    Article  CAS  PubMed  Google Scholar 

  39. Frydman HM, Li JM, Robson DN, Wieschaus E (2006) Somatic stem cell niche tropism in Wolbachia. Nature 441:509–512. https://doi.org/10.1038/nature04756

    Article  CAS  PubMed  Google Scholar 

  40. Wang XX, Qi LD, Jiang R, Du YZ, Li YX (2017) Incomplete removal of Wolbachia with tetracycline has two-edged reproductive effects in the thelytokous wasp Encarsia formosa (Hymenoptera: Aphelinidae). Sci Rep 7:44014. https://doi.org/10.1038/srep44014

    Article  PubMed  PubMed Central  Google Scholar 

  41. Goodacre SL, Martin OY (2012) Modification of insect and arachnid behaviours by vertically transmitted endosymbionts: infections as drivers of behavioural change and evolutionary novelty. Insects 3:246–261

    Article  Google Scholar 

  42. Miller WJ, Ehrman L, Schneider D (2010) Infectious speciation revisited: impact of symbiont-depletion on female fitness and mating behavior of Drosophila paulistorum. PLoS Pathog 6:e1001214. https://doi.org/10.1371/journal.ppat.1001214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kremer N, Voronin D, Charif D, Mavingui P, Mollereau B, Vavre F(2009) Wolbachia interferes with ferretin expression and iron metabolism in insects. PLoS Pathogens. https://doi.org/10.1371/journal.ppat.1000630

  44. Brownlie JC, Cass BN, Riegler M, Witsenburg JJ, Iturbe-Ormaetxe I, McGraw EA, O’Neill SL (2009) Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog 5:e1000368. https://doi.org/10.1371/journal.ppat.1000368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Darby AC, Armstrong SD, Bah GS, Kaur G, Hughes MA, Kay SM, Makepeace BL (2012) Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis. Genome Res 22:2467–2477. https://doi.org/10.1101/gr.138420.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hedges LM, Brownlie JC, Johnson O’Neill SL., KN, (2008) Wolbachia and virus protection in insects. Science 322:702–702. https://doi.org/10.1126/science.1162418

    Article  CAS  PubMed  Google Scholar 

  47. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, O’Neill SL (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139:1268–1278. https://doi.org/10.1016/j.cell.2009.11.042

    Article  Google Scholar 

  48. Bagheri Z, Talebi AA, Asgari S, Mehrabadi M (2019b) Wolbachia promote successful sex with siblings. bioRxiv 855635. https://doi.org/10.1101/855635

  49. Pietri JE, DeBruh lH, Sullivan W (2016) The rich somatic life of Wolbachia. Microbiologyopen 5:923–936. https://doi.org/10.1002/mbo3.390

    Article  PubMed  PubMed Central  Google Scholar 

  50. Osborne SE, Iturbe-Ormaetxe I, Brownlie JC, O’Neill SL, Johnson KN (2012) Antiviral protection and the importance of Wolbachia density and tissue tropism in Drosophila simulans. Appl Environ Microbiol 78:6922–6929

    Article  CAS  Google Scholar 

  51. Osborne SE, San Leong Y, O’Neill SL, Johnson KN (2009) Variation in antiviral protection mediated by different Wolbachia strains in Drosophila simulans. PLoS Pathog 5(11):e1000656. https://doi.org/10.1371/journal.ppat.1000656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bonneau M, Landmann F, Labbé P, Justy F, Weill M, Sicard M (2018) The cellular phenotype of cytoplasmic incompatibility in Culex pipiens in the light of cidB diversity. PLoS Pathog 14:e1007364. https://doi.org/10.1371/journal.ppat.1007364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tortosa P, Charlat S, Labbe P, Dehecq JS, Barré H, Weill M (2010) Wolbachia age-sex-specific density in Aedes albopictus: a host evolutionary response to cytoplasmic incompatibility? PLoS One 5:e9700. https://doi.org/10.1371/journal.pone.0009700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ming QL, Shen JF, Cheng C, Liu CM, Feng ZJ (2015) Wolbachia infection dynamics in Tribolium confusum (Coleoptera: Tenebrionidae) and their effects on host mating behavior and reproduction. J Econ Entomol 108:1408–1415. https://doi.org/10.1093/jee/tov053

    Article  CAS  PubMed  Google Scholar 

  55. Perlman SJ, Dowdy NJ, Harris LR, Khalid M, Kelly SE, Hunter MS (2014) Factors affecting the strength of Cardinium-induced cytoplasmic incompatibility in the parasitic wasp Encarsia pergandiella (Hymenoptera: Aphelinidae). Microbl Ecol 67:671–678. https://doi.org/10.1007/s00248-013-0359-0

    Article  Google Scholar 

  56. Mouton L, Henri H, Bouletreau M, Vavre F (2003) Strain-specific regulation of intracellular Wolbachia density in multiply infected insects. Mol Ecol 12:3459–3465. https://doi.org/10.1046/j.1365-294X.2003.02015.x

    Article  CAS  PubMed  Google Scholar 

  57. Sanogo YO, Dobson SL (2006) WO bacteriophage transcription in Wolbachia-infected Culex pipiens. Insect Biochem Mol Biol 36:80–85. https://doi.org/10.1016/j.ibmb.2005.11.001

    Article  CAS  PubMed  Google Scholar 

  58. Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42:587–609

    Article  CAS  Google Scholar 

  59. Clark ME, Bailey-Jourdain C, Ferree PM, England SJ, Sullivan W, Windsor DM, Werren JH (2008) Wolbachia modification of sperm does not always require residence within developing sperm. Heredity 101:420–428. https://doi.org/10.1028/hdy.2008.71

    Article  CAS  PubMed  Google Scholar 

  60. Clark ME, Veneti Z, Bourtzis K, Karr TL (2003) Wolbachia distribution and cytoplasmic incompatibility during sperm development: the cyst as the basic cellular unit of CI expression. Mech Dev 120:185–198. https://doi.org/10.1016/S0925-4773(02)00424-0

    Article  CAS  PubMed  Google Scholar 

  61. Boivin G, Jacob S, Damiens D (2005) Spermatogeny as a life-history index in parasitoid wasps. Oecologia 143:198–202. https://doi.org/10.1007/s00442-004-1800-3

    Article  PubMed  Google Scholar 

  62. Ferree PM, Aldrich JC, Jing XA, Norwood CT, Van Schaick MR, Cheema MS, Gowen BE (2019) Spermatogenesis in haploid males of the jewel wasp Nasonia vitripennis. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-019-48332-9

    Article  CAS  Google Scholar 

  63. Doremus MR, Stouthamer CM, Kelly SE, Schmitz-Esser S, Hunter MS (2020) Cardinium localization during its parasitoid wasp host’s development provides insights into cytoplasmic incompatibility. Front Microbiol 11:3153. https://doi.org/10.3389/fmicb.2020.606399

    Article  Google Scholar 

  64. Kent BN, Bordenstein SR (2010) Phage WO of Wolbachia: lambda of the endosymbiont world. Trends Microbiol 18:173–181. https://doi.org/10.1016/j.tim.2009.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jaenike J (2009) Coupled population dynamics of endosymbionts within and between hosts. Oikos 118:353–362. https://doi.org/10.1111/j.1600-0706.2008.17110.x

    Article  Google Scholar 

  66. Snook RR, Cleland SY, Wolfner MF, Karr TL (2000) Offsetting effects of Wolbachia infection and heat shock on sperm production in Drosophila simulans: analyses of fecundity, fertility and accessory gland proteins. Genetics 155:167–178

    Article  CAS  Google Scholar 

  67. Wiwatanaratanabutr I, Grandjean F (2016) Impacts of temperature and crowding on sex ratio, fecundity and Wolbachia infection intensity in the copepod, Mesocyclops thermocyclopoides. J Invertebr Pathol 141:18–23. https://doi.org/10.1016/j.jip.2016.10.003

    Article  PubMed  Google Scholar 

  68. Ross PA, Wiwatanaratanabutr I, Axford JK, White VL, Endersby-Harshman NM, Hoffmann AA (2017) Wolbachia infections in Aedes aegypti differ markedly in their response to cyclical heat stress. PLoS Pathog 13:e1006006. https://doi.org/10.1371/journal.ppat.1006006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zizzari ZV, Ellers J (2011) Effects of exposure to short-term heat stress on male reproductive fitness in a soil arthropod. J Insect Physiol 57:421–426. https://doi.org/10.1016/j.jinsphys.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  70. Nguyen TM, Bressac C, Chevrier C (2013) Heat stress affects male reproduction in a parasitoid wasp. J Insect Physiol 59:248–254. https://doi.org/10.1016/j.jinsphys.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  71. Chevrier C, Nguyen TM, Bressac C (2019) Heat shock sensitivity of adult male fertility in the parasitoid wasp Anisopteromalus calandrae (Hymenoptera, Pteromalidae). J Therm Boil 85:102419. https://doi.org/10.1016/j.jtherbio.2019.102419

    Article  Google Scholar 

  72. Chirault M, Lucas C, Goubault M, Chevrier C, Bressac C, Lécureuil CA (2015) Combined approach to heat stress effect on male fertility in Nasonia vitripennis: from the physiological consequences on spermatogenesis to the reproductive adjustment of females mated with stressed males. PLoS One 10:e0120656. https://doi.org/10.1371/journal.pone.0120656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Charlesworth J, Weinert LA, Araujo EV Jr, Welch JJ (2019) Wolbachia, Cardinium and climate: an analysis of global data. Biol Lett 15:20190273. https://doi.org/10.1098/rsbl.2019.0273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Zeynab Bagheri and Fatemeh Badran for their assistance during the project.

Funding

This project was supported by the Iran National Science Foundation grant (98008582).

Author information

Authors and Affiliations

Authors

Contributions

M.M. designed the experiments. S.F.N. performed the experiments. M.M. and Y. F. provided facility, materials, and reagents. All the authors analyzed the data and wrote the paper.

Corresponding author

Correspondence to Mohammad Mehrabadi.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 94 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasehi, S.F., Fathipour, Y., Asgari, S. et al. Environmental Temperature, but Not Male Age, Affects Wolbachia and Prophage WO Thereby Modulating Cytoplasmic Incompatibility in the Parasitoid Wasp, Habrobracon Hebetor. Microb Ecol 83, 482–491 (2022). https://doi.org/10.1007/s00248-021-01768-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01768-x

Keywords

Navigation