Skip to main content
Log in

Identifying Potential Polymicrobial Pathogens: Moving Beyond Differential Abundance to Driver Taxa

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

It is now recognized that some diseases of aquatic animals are attributed to polymicrobial pathogens infection. Thus, the traditional view of “one pathogen, one disease” might mislead the identification of multiple pathogens, which in turn impedes the design of probiotics. To address this gap, we explored polymicrobial pathogens based on the origin and timing of increased abundance over shrimp white feces syndrome (WFS) progression. OTU70848 Vibrio fluvialis, OTU35090 V. coralliilyticus, and OTU28721 V. tubiashii were identified as the primary colonizers, whose abundances increased only in individuals that eventually showed disease signs but were stable in healthy subjects over the same timeframe. Notably, the random Forest model revealed that the profiles of the three primary colonizers contributed an overall 91.4% of diagnosing accuracy of shrimp health status. Additionally, NetShift analysis quantified that the three primary colonizers were important “drivers” in the gut microbiotas from healthy to WFS shrimp. For these reasons, the primary colonizers were potential pathogens that contributed to the exacerbation of WFS. By this logic, we further identified a few “drivers” commensals in healthy individuals, such as OUT50531 Demequina sediminicola and OTU_74495 Ruegeria lacuscaerulensis, which directly antagonized the three primary colonizers. The predicted functional pathways involved in energy metabolism, genetic information processing, terpenoids and polyketides metabolism, lipid and amino acid metabolism significantly decreased in diseased shrimp compared with those in healthy cohorts, in concordant with the knowledge that the attenuations of these functional pathways increase shrimp sensitivity to pathogen infection. Collectively, we provide an ecological framework for inferring polymicrobial pathogens and designing antagonized probiotics by quantifying their changed “driver” feature that intimately links shrimp WFS progression. This approach might generalize to the exploring disease etiology for other aquatic animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Espín JC (2017) Gut microbiota, diet and health. Mol Nutr Food Res 61:1770015

    Google Scholar 

  2. Li T, Tian D, Zhu Z et al (2019) The gut microbiota: a new perspective on the toxicity of malachite green (MG). Appl Microbiol Biotechnol 103:23–24

    Google Scholar 

  3. Xiong J, Dai W, Zhu J, Liu K, Dong C, Qiu Q (2017) The underlying ecological processes of gut microbiota among cohabitating retarded, overgrown and normal shrimp. Microb Ecol 73:988–999

    PubMed  Google Scholar 

  4. Hou D, Huang Z, Zeng S, Liu J, Weng S, He J (2018) Comparative analysis of the bacterial community compositions of the shrimp intestine, surrounding water and sediment. J Appl Microbiol 125:792–799

    PubMed  CAS  Google Scholar 

  5. Zhu J, Dai W, Qiu Q, Dong C, Zhang J, Xiong J (2016) Contrasting ecological processes and functional compositions between intestinal bacterial community in healthy and diseased shrimp. Microb Ecol 72:975–985

    PubMed  Google Scholar 

  6. Cornejo-Granados F, Gallardo-Becerra L, Leonardo-Reza M et al (2018) A meta-analysis reveals the environmental and host factors shaping the structure and function of the shrimp microbiota. PeerJ 6:e5382

    PubMed  PubMed Central  Google Scholar 

  7. Yang G, Tian X, Dong S, Liang L (2019) Bacillus cereus and rhubarb regulate the intestinal microbiota of sea cucumber (Apostichopus japonicus Selenka): species-species interaction, network, and stability. Aquaculture 512:734284

    Google Scholar 

  8. Weng FH, Shaw GW, Weng CY et al (2017) Inferring microbial interactions in the gut of the Hong Kong whipping frog (Polypedates megacephalus) and a validation using probiotics. Front Microbiol 8:525

    PubMed  PubMed Central  Google Scholar 

  9. Vonaesch P, Anderson M, Sansonetti PJ (2018) Pathogens, microbiome and the host: emergence of the ecological Koch’s postulates. FEMS Microbiol Rev 42:273–292

    PubMed  CAS  Google Scholar 

  10. Rogers GB, Hoffman LR, Carroll MP, Bruce KD (2013) Interpreting infective microbiota: the importance of an ecological perspective. Trends Microbiol 21:271–276

    PubMed  CAS  Google Scholar 

  11. Gignoux-Wolfsohn SA, Aronson FM, Vollmer SV (2017) Complex interactions between potentially pathogenic, opportunistic, and resident bacteria emerge during infection on a reef-building coral. FEMS Microbiol Ecol 93:fix080

    Google Scholar 

  12. Stephens WZ, Burns AR, Stagaman K, Wong S, Rawls JF, Guillemin K, Bohannan BJ (2016) The composition of the zebrafish intestinal microbial community varies across development. ISME J 10:644–654

    PubMed  Google Scholar 

  13. Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, Bohannan BJ (2016) Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J 10:655–664

    PubMed  CAS  Google Scholar 

  14. Xiong J, Dai W, Qiu Q, Zhu J, Yang W, Li C (2018) Response of host–bacterial colonization in shrimp to developmental stage, environment and disease. Mol Ecol 27:3686–3699

    PubMed  Google Scholar 

  15. Dai W, Chen J, Xiong J (2019) Concept of microbial gatekeepers: positive guys? Appl Microbiol Biotechnol 103:633–641

    PubMed  CAS  Google Scholar 

  16. Montoya JM, Pimm SL, Solé RV (2006) Ecological networks and their fragility. Nature 442:259

    PubMed  CAS  Google Scholar 

  17. Banerjee S, Schlaeppi K, vander Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16:567–576

    PubMed  CAS  Google Scholar 

  18. Nicholson JK, Holmes E, Kinross J et al (2012) Host-gut microbiota metabolic interactions. Science (80- ) 336:1262–1267

    CAS  Google Scholar 

  19. Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE, Flint HJ (2006) Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 72:3593–3599

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Buffie CG, Bucci V, Stein RR, McKenney P, Ling L, Gobourne A, No D, Liu H, Kinnebrew M, Viale A, Littmann E, van den Brink M, Jenq RR, Taur Y, Sander C, Cross JR, Toussaint NC, Xavier JB, Pamer EG (2015) Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 517:205–208

    PubMed  CAS  Google Scholar 

  22. Dai W, Yu W, Xuan L, et al (2018) Integrating molecular and ecological approaches to identify potential polymicrobial pathogens over a shrimp disease progression. Appl Microbiol Biotechnol 102:3755–3764

    PubMed  CAS  Google Scholar 

  23. Coyte KZ, Schluter J, Foster KR (2015) The ecology of the microbiome: networks, competition, and stability. Science 350:663–666

    PubMed  CAS  Google Scholar 

  24. Deng Y, Jiang YH, Yang Y et al (2012) Molecular ecological network analyses. BMC Bioinformatics 13:113

    PubMed  PubMed Central  Google Scholar 

  25. Kuntal BK, Chandrakar P, Sadhu S, Mande SS (2019) ‘NetShift’: a methodology for understanding ‘driver microbes’ from healthy and disease microbiome datasets. ISME J 13:442–454

    PubMed  Google Scholar 

  26. Sriurairatana S, Boonyawiwat V, Gangnonngiw W et al (2014) White feces syndrome of shrimp arises from transformation, sloughing and aggregation of hepatopancreatic microvilli into vermiform bodies superficially resembling gregarines. PLoS One 9:e99170

    PubMed  PubMed Central  Google Scholar 

  27. Xiong J, Zhu J, Dai W, Dong C, Qiu Q, Li C (2017) Integrating gut microbiota immaturity and disease-discriminatory taxa to diagnose the initiation and severity of shrimp disease. Environ Microbiol 19:1490–1501

    PubMed  Google Scholar 

  28. Selvin J, Huxley AJ, Lipton AP (2004) Immunomodulatory potential of marine secondary metabolites against bacterial diseases of shrimp. Aquaculture. 230:241–248

    Google Scholar 

  29. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    PubMed  PubMed Central  Google Scholar 

  30. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    PubMed  CAS  Google Scholar 

  33. Caporaso JG, Bittinger K, Bushman FD et al (2009) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267

    PubMed  PubMed Central  Google Scholar 

  34. Oksanen J, Blanchet FG, Kindt R, et al (2010) Vegan: community ecology package. R package version 1.17–4. http//cran r-project/org

  35. Harrell FE, Harrell Jr MFE (2019) Package ‘Hmisc.’ CRAN2018 235–236

  36. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  37. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22

    Google Scholar 

  39. Xiong J (2018) Progress in the gut microbiota in exploring shrimp disease pathogenesis and incidence. Appl Microbiol Biotechnol 102:7343–7350

    PubMed  CAS  Google Scholar 

  40. Ben-Haim Y, Thompson FL, Thompson CC, Cnockaert MC, Hoste B, Swings J, Rosenberg E (2003) Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis. Int J Syst Evol Microbiol 53:309–315

    PubMed  CAS  Google Scholar 

  41. Ramayo-Caldas Y, Mach N, Lepage P, Levenez F, Denis C, Lemonnier G, Leplat JJ, Billon Y, Berri M, Doré J, Rogel-Gaillard C, Estellé J (2016) Phylogenetic network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth traits. ISME J 10:2973–2977

    PubMed  PubMed Central  Google Scholar 

  42. Xiong J, Wang K, Wu J et al (2015) Changes in intestinal bacterial communities are closely associated with shrimp disease severity. Appl Microbiol Biotechnol 99:6911–6919

    PubMed  CAS  Google Scholar 

  43. Clemente JC, Ursell LK, Laura Wegener P, Rob K (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Huang Z, Li X, Wang L, Shao Z (2016) Changes in the intestinal bacterial community during the growth of white shrimp, Litopenaeus vannamei. Aquac Res 47:1737–1746

    Google Scholar 

  45. Yao Z, Yang K, Huang L et al (2018) Disease outbreak accompanies the dispersive structure of shrimp gut bacterial community with a simple core microbiota. AMB Express 8:120

    PubMed  PubMed Central  Google Scholar 

  46. Wang J, Huang Y, Xu K, Zhang X, Sun H, Fan L, Yan M (2019) White spot syndrome virus (WSSV) infection impacts intestinal microbiota composition and function in Litopenaeus vannamei. Fish Shellfish Immunol 84:130–137

    PubMed  Google Scholar 

  47. Yu W, Wu JH, Zhang J et al (2018) A meta-analysis reveals universal gut bacterial signatures for diagnosing the incidence of shrimp disease. FEMS Microbiol Ecol 94:fiy147

    CAS  Google Scholar 

  48. Phumkhachorn P, Rattanachaikunsopon P (2010) Isolation and partial characterization of a bacteriophage infecting the shrimp pathogen Vibrio harveyi. Afr J Microbiol Res 4:1794–1800

    Google Scholar 

  49. Xiong J, Dai W, Li C (2016) Advances, challenges, and directions in shrimp disease control: the guidelines from an ecological perspective. Appl Microbiol Biotechnol 100:6947–6954

    PubMed  CAS  Google Scholar 

  50. Igbinosa E, Okoh AI (2010) Vibrio fluvialis: an unusual enteric pathogen of increasing public health concern. Int J Environ Res Public Health 7:3628–3643

    PubMed  PubMed Central  Google Scholar 

  51. Garren M, Son K, Raina JB, Rusconi R, Menolascina F, Shapiro OH, Tout J, Bourne DG, Seymour JR, Stocker R (2014) A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J 8:999–1007

    PubMed  CAS  Google Scholar 

  52. Hamilton AL, Kamm MA, Ng SC, Morrison M (2018) Proteus spp. as putative gastrointestinal pathogens. Clin Microbiol Rev 31:e00085–e00017

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Sandaruwan Kumara KRP, Hettiarachchi M (2017) White faeces syndrome caused by vibrio alginolyticus and vibrio fluvialis in shrimp, Penaeus monodon (Fabricius 1798)-multimodal strategy to control the syndrome in Sri Lankan grow-out ponds. Asian Fish Sci 30:245–261

    Google Scholar 

  54. Silvester R, Alexander D, George M, Hatha AAM (2017) Prevalence and multiple antibiotic resistance of Vibrio coralliilyticus, along the southwest coast of India. Curr Sci 112:1749–1755

    CAS  Google Scholar 

  55. Lightner DV (2011) Virus diseases of farmed shrimp in the Western hemisphere (the Americas): a review. J Invertebr Pathol 106:110–130

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Mallon CA, Van Elsas JD, Salles JF (2015) Microbial invasions: the process, patterns, and mechanisms. Trends Microbiol 23:719–729

    PubMed  CAS  Google Scholar 

  57. Jones SE, Lennon JT (2010) Dormancy contributes to the maintenance of microbial diversity. Proc Natl Acad Sci U S A 107:5881–5886

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Bressan W (2003) Biological control of maize seed pathogenic fungi by use of actinomycetes. BioControl 48:233–240

    Google Scholar 

  59. Newaj-Fyzul A, Al-Harbi AH, Austin B (2014) Developments in the use of probiotics for disease control in aquaculture. Aquaculture 431:1–11

    Google Scholar 

  60. Xiong J, Zhu J, Zhang D (2014) The application of bacterial indicator phylotypes to predict shrimp health status. Appl Microbiol Biotechnol 98:8291–8299

    PubMed  CAS  Google Scholar 

  61. Douglas GM, Beiko RG, Langille MGI (2018) Predicting the functional potential of the microbiome from marker genes using PICRUSt. In: Beiko R, Hsiao W, Parkinson J (eds) Microbiome Analysis. Methods in Molecular Biology, Humana Press, New York, 1849:169–17

  62. Immanuel G, Sivagnanavelmurugan M, Palavesam A (2011) Antibacterial effect of medium-chain fatty acid: caprylic acid on gnotobiotic Artemia franciscana nauplii against shrimp pathogens Vibrio harveyi and V. parahaemolyticus. Aquac Int 19:91–101

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31872693), the Natural Science Fund for Distinguished Young Scholars of Zhejiang Province (LR19C030001), the Technology Innovation Team of Ningbo (2015C110018), and the K.C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Contributions

JC and JX conceived and designed research. JL, XZ, and QQ conducted experiments. JX contributed to analytical tools. JL and JX analyzed the data and wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Jinbo Xiong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

This article does not contain any studies with human participants performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of shrimp followed the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Additional information

Key points

• Polymicrobial pathogens were identified by distinguishing shrimp age from disease effect.

• Potential pathogens were validated by “driver” feature and diagnosis accuracy.

• Taxa that directly antagonized the candidate pathogens were identified.

• We exemplified the identification of polymicrobial pathogens and the design of antagonized probiotics.

Electronic Supplementary Material

ESM 1

(DOC 3492 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Zhang, X., Qiu, Q. et al. Identifying Potential Polymicrobial Pathogens: Moving Beyond Differential Abundance to Driver Taxa. Microb Ecol 80, 447–458 (2020). https://doi.org/10.1007/s00248-020-01511-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01511-y

Keywords

Navigation