Skip to main content
Log in

Disentangling Community Structure of Ecological System in Activated Sludge: Core Communities, Functionality, and Functional Redundancy

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The microbial ecosystems of the sludge were characterized in terms of the core community structure, functional pathways, and functional redundancy through Illumina MiSeq sequencing and PICRUSt analysis on the activated sludge (AS) samples from an extended activated aeration process. Based on the identified OTU distribution, we identified 125 core community genera, including 3 abundant core genera and 21 intermittent abundant core genera. Putative genera Nitrosomonas, Nitrotoga, Zoogloea, Novosphingobium, Thermomonas, Amaricoccus, Tetrasphaera, Candidatus Microthrix, and Haliscomenobacter, which are associated with functions of nitrifying, denitrifying, phosphorus accumulating, and bulking and foaming, were found to present as the core community organisms in the AS sampled from the conventional extended aeration AS processes. The high-abundant nitrogen metabolic pathways were associated with nitrate reduction to ammonium (DNRA and ANRA), denitrification, and nitrogen fixation, while the ammonia oxidation–related genes (amo) were rarely annotated in the AS samples. Strict functional redundancy was not found with the AS ecosystem as it showed a high correlation between the community composition similarity and function similarity. In addition, the classified dominant core genera community was found to be sufficient to characterize the functionality of AS, which could invigorate applications of 16S rDNA MiSeq sequencing and PICRUSt for the prediction of functions of AS ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Modin O, Persson F, Wilén B-M, Hermansson M (2016) Nonoxidative removal of organics in the activated sludge process. Crit Rev Environ Sci Technol 46:635–672. https://doi.org/10.1080/10643389.2016.1149903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Liu Y, Zhang T, Fang HHP (2005) Microbial community analysis and performance of a phosphate-removing activated sludge. Bioresour Technol 96:1205–1214. https://doi.org/10.1016/j.biortech.2004.11.003

    Article  PubMed  CAS  Google Scholar 

  3. Yao Q, Peng D-C (2017) Nitrite oxidizing bacteria (NOB) dominating in nitrifying community in full-scale biological nutrient removal wastewater treatment plants. AMB Express 7:25–35. https://doi.org/10.1186/s13568-017-0328-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Xia S, Duan L, Song Y et al (2010) Bacterial community structure in geographically distributed biological wastewater treatment reactors. Environ Sci Technol 44:7391–7396. https://doi.org/10.1021/es101554m

    Article  PubMed  CAS  Google Scholar 

  5. An Y, Zhou Z, Yao J, Niu T, Qiu Z, Ruan D, Wei H (2017) Sludge reduction and microbial community structure in an anaerobic/anoxic/oxic process coupled with potassium ferrate disintegration. Bioresour Technol 245:954–961. https://doi.org/10.1016/J.BIORTECH.2017.09.023

    Article  PubMed  CAS  Google Scholar 

  6. Pervin HM, Dennis PG, Lim HJ et al (2013) Drivers of microbial community composition in mesophilic and thermophilic temperature-phased anaerobic digestion pre-treatment reactors. Water Res 47:7098–7108. https://doi.org/10.1016/J.WATRES.2013.07.053

    Article  PubMed  CAS  Google Scholar 

  7. Zhang T, Shao M-F, Ye L (2012) 454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J 6:1137–1147. https://doi.org/10.1038/ismej.2011.188

    Article  PubMed  CAS  Google Scholar 

  8. Chen H, Chang S (2017) Impact of temperatures on microbial community structures of sewage sludge biological hydrolysis. Bioresour Technol 245:502–510. https://doi.org/10.1016/J.BIORTECH.2017.08.143

    Article  PubMed  CAS  Google Scholar 

  9. Ju F, Guo F, Ye L et al (2014) Metagenomic analysis on seasonal microbial variations of activated sludge from a full-scale wastewater treatment plant over 4 years. Environ Microbiol Rep 6:80–89. https://doi.org/10.1111/1758-2229.12110

    Article  PubMed  CAS  Google Scholar 

  10. Zhang H, Feng J, Chen S, Zhao Z, Li B, Wang Y, Jia J, Li S, Wang Y, Yan M, Lu K, Hao H (2019) Geographical patterns of nirS gene abundance and nirS-type denitrifying bacterial community associated with activated sludge from different wastewater treatment plants. Microb Ecol 77:304–316. https://doi.org/10.1007/s00248-018-1236-7

    Article  PubMed  CAS  Google Scholar 

  11. Saunders AM, Albertsen M, Vollertsen J, Nielsen PH (2016) The activated sludge ecosystem contains a core community of abundant organisms. ISME J 10:11–20. https://doi.org/10.1038/ismej.2015.117

    Article  PubMed  CAS  Google Scholar 

  12. Liu F, Hu X, Zhao X et al (2019) Microbial community structures’ response to seasonal variation in a full-scale municipal wastewater treatment plant. Environ Eng Sci 36:172–179. https://doi.org/10.1089/ees.2018.0280

    Article  CAS  Google Scholar 

  13. Gao Y, Peng Y, Zhang J, Wang S, Guo J, Ye L (2011) Biological sludge reduction and enhanced nutrient removal in a pilot-scale system with 2-step sludge alkaline fermentation and A2O process. Bioresour Technol 102:4091–4097. https://doi.org/10.1016/j.biortech.2010.12.051

    Article  PubMed  CAS  Google Scholar 

  14. Guo J, Ni B-J, Han X, Chen X, Bond P, Peng Y, Yuan Z (2017) Unraveling microbial structure and diversity of activated sludge in a full-scale simultaneous nitrogen and phosphorus removal plant using metagenomic sequencing. Enzym Microb Technol 102:16–25. https://doi.org/10.1016/J.ENZMICTEC.2017.03.009

    Article  CAS  Google Scholar 

  15. Yu K, Zhang T (2012) Metagenomic and Metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS One 7:e38183. https://doi.org/10.1371/journal.pone.0038183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821. https://doi.org/10.1038/nbt.2676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lin X, Hetharua B, Lin L, Xu H, Zheng T, He Z, Tian Y (2019) Mangrove sediment microbiome: adaptive microbial assemblages and their routed biogeochemical processes in Yunxiao Mangrove National Nature Reserve, China. Microb Ecol 78:57–69. https://doi.org/10.1007/s00248-018-1261-6

    Article  PubMed  CAS  Google Scholar 

  18. Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555. https://doi.org/10.1016/j.mimet.2003.08.009

    Article  PubMed  CAS  Google Scholar 

  19. Wang Y, Qian P-Y (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One 4:e7401. https://doi.org/10.1371/journal.pone.0007401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Liu Z, DeSantis TZ, Andersen GL, Knight R (2008) Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Res 36:120–130. https://doi.org/10.1093/nar/gkn491

    Article  CAS  Google Scholar 

  21. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, van Horn D, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/nmeth.2604

    Article  PubMed  CAS  Google Scholar 

  23. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6:e27310. https://doi.org/10.1371/journal.pone.0027310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  PubMed  CAS  Google Scholar 

  26. Yadav TC, Khardenavis AA, Kapley A (2014) Shifts in microbial community in response to dissolved oxygen levels in activated sludge. Bioresour Technol 165:257–264. https://doi.org/10.1016/j.biortech.2014.03.007

    Article  PubMed  CAS  Google Scholar 

  27. Stoddard SF, Smith BJ, Hein R, Roller BR, Schmidt TM (2015) rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res 43:593–598. https://doi.org/10.1093/nar/gku1201

    Article  CAS  Google Scholar 

  28. Sampson TR, Debelius JW, Thron T et al (2016) Gut microbiota regulate motor deficits and Neuroinflammation in a model of Parkinson’s disease. Cell 167:1469–1480.e12. https://doi.org/10.1016/J.CELL.2016.11.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124. https://doi.org/10.1093/bioinformatics/btu494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gibson DJ, Ely JS, Collins SL (1999) The core-satellite species hypothesis provides a theoretical basis for Grime’s classification of dominant, subordinate, and transient species. J Ecol 87:1064–1067. https://doi.org/10.1046/j.1365-2745.1999.00424.x

    Article  Google Scholar 

  31. Gao P, Xu W, Sontag P, Li X, Xue G, Liu T, Sun W (2016) Correlating microbial community compositions with environmental factors in activated sludge from four full-scale municipal wastewater treatment plants in Shanghai, China. Appl Microbiol Biotechnol 100:4663–4673. https://doi.org/10.1007/s00253-016-7307-0

    Article  PubMed  CAS  Google Scholar 

  32. Metcalf, Eddy (2014) Wastewater engineering: treatment and resource recoveryfifth edn. McGraw-Hill Education, New York

  33. Geets J, Boon N, Verstraete W (2006) Strategies of aerobic ammonia-oxidizing bacteria for coping with nutrient and oxygen fluctuations. FEMS Microbiol Ecol 58:1–13. https://doi.org/10.1111/j.1574-6941.2006.00170.x

    Article  PubMed  CAS  Google Scholar 

  34. Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, von Bergen M, Rattei T, Bendinger B, Nielsen PH, Wagner M (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504–509. https://doi.org/10.1038/nature16461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Alawi M, Off S, Kaya M, Spieck E (2009) Temperature influences the population structure of nitrite-oxidizing bacteria in activated sludge. Environ Microbiol Rep 1:184–190. https://doi.org/10.1111/j.1758-2229.2009.00029.x

    Article  PubMed  CAS  Google Scholar 

  36. Nielsen PH, Mielczarek AT, Kragelund C, Nielsen JL, Saunders AM, Kong Y, Hansen AA, Vollertsen J (2010) A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants. Water Res 44:5070–5088. https://doi.org/10.1016/J.WATRES.2010.07.036

    Article  PubMed  CAS  Google Scholar 

  37. Zielińska M, Rusanowska P, Jarząbek J, Nielsen JL (2016) Community dynamics of denitrifying bacteria in full-scale wastewater treatment plants. Environ Technol 37:2358–2367. https://doi.org/10.1080/09593330.2016.1150350

    Article  PubMed  CAS  Google Scholar 

  38. Cheng C, Zhou Z, Pang H, Zheng Y, Chen L, Jiang LM, Zhao X (2018) Correlation of microbial community structure with pollutants removal, sludge reduction and sludge characteristics in micro-aerobic side-stream reactor coupled membrane bioreactors under different hydraulic retention times. Bioresour Technol 260:177–185. https://doi.org/10.1016/J.BIORTECH.2018.03.088

    Article  PubMed  CAS  Google Scholar 

  39. Mergaert J, Cnockaert MC, Swings J (2003) Thermomonas fusca sp. nov. and Thermomonas brevis sp. nov., two mesophilic species isolated from a denitrification reactor with poly( −caprolactone) plastic granules as fixed bed, and emended description of the genus Thermomonas. Int J Syst Evol Microbiol 53:1961–1966. https://doi.org/10.1099/ijs.0.02684-0

    Article  PubMed  CAS  Google Scholar 

  40. Zhang L, Sun H, Zhang X, Ren H, Ye L (2018) High diversity of potential nitrate-reducing Fe (II)-oxidizing bacteria enriched from activated sludge. Appl Microbiol Biotechnol 102:4975–4985. https://doi.org/10.1007/s00253-018-8961-1

    Article  PubMed  CAS  Google Scholar 

  41. Straub KL, Schönhuber WA, Buchholz-Cleven BEE, Schink B (2004) Diversity of ferrous Iron-oxidizing, nitrate-reducing Bacteria and their involvement in oxygen-independent Iron cycling. Geomicrobiol J 21:371–378. https://doi.org/10.1080/01490450490485854

    Article  CAS  Google Scholar 

  42. Strand SE, McDonnell AJ, Unz RF (1988) Oxygen and nitrate reduction kinetics of a nonflocculating strain of Zoogloea ramigera. Antonie Van Leeuwenhoek 54:245–255. https://doi.org/10.1007/BF00443583

    Article  PubMed  CAS  Google Scholar 

  43. Huang T-L, Zhou S-L, Zhang H-H, Bai SY, He XX, Yang X (2015) Nitrogen removal characteristics of a newly isolated indigenous aerobic denitrifier from oligotrophic drinking water reservoir, Zoogloea sp. N299. Int J Mol Sci 16:10038–10060. https://doi.org/10.3390/ijms160510038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Xia Y, Wen X, Zhang B, Yang Y (2018) Diversity and assembly patterns of activated sludge microbial communities: a review. Biotechnol Adv 36:1038–1047. https://doi.org/10.1016/J.BIOTECHADV.2018.03.005

    Article  PubMed  Google Scholar 

  45. Muszyński A, Załęska-Radziwiłł M (2015) Polyphosphate accumulating organisms in treatment plants with different wastewater composition. Architect Civ Eng Environ:99–106

  46. Mielczarek AT, Nguyen HTT, Nielsen JL, Nielsen PH (2013) Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants. Water Res 47:1529–1544. https://doi.org/10.1016/J.WATRES.2012.12.003

    Article  PubMed  CAS  Google Scholar 

  47. Marrengane Z, Kumar SKS, Pillay L, Bux F (2011) Rapid quantification and analysis of genetic diversity among Gordonia populations in foaming activated sludge plants. J Basic Microbiol 51:415–423. https://doi.org/10.1002/jobm.201000213

    Article  PubMed  CAS  Google Scholar 

  48. Kaetzke A, Jentzsch D, Eschrich K (2005) Quantification of Microthrix parvicella in activated sludge bacterial communities by real-time PCR. Lett Appl Microbiol 40:207–211. https://doi.org/10.1111/j.1472-765X.2005.01656.x

    Article  PubMed  CAS  Google Scholar 

  49. Kotay SM, Datta T, Choi J, Goel R (2011) Biocontrol of biomass bulking caused by Haliscomenobacter hydrossis using a newly isolated lytic bacteriophage. Water Res 45:694–704. https://doi.org/10.1016/J.WATRES.2010.08.038

    Article  PubMed  CAS  Google Scholar 

  50. Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O'Connor MI, Ackermann M, Hahn AS, Srivastava DS, Crowe SA, Doebeli M, Parfrey LW (2018) Function and functional redundancy in microbial systems. Nat Ecol Evol 2:936–943. https://doi.org/10.1038/s41559-018-0519-1

    Article  PubMed  Google Scholar 

  51. Fan X-Y, Gao J-F, Pan K-L et al (2017) Temporal dynamics of bacterial communities and predicted nitrogen metabolism genes in a full-scale wastewater treatment plant. RSC Adv 7:56317–56327. https://doi.org/10.1039/C7RA10704H

    Article  CAS  Google Scholar 

  52. Fuhrman JA, Cram JA, Needham DM (2015) Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol 13:133–146. https://doi.org/10.1038/nrmicro3417

    Article  PubMed  CAS  Google Scholar 

  53. Sunagawa S, Coelho LP, Chaffron S et al (2015) Ocean plankton. Structure and function of the global ocean microbiome. Science 348:1261359. https://doi.org/10.1126/science.1261359

    Article  PubMed  CAS  Google Scholar 

  54. Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272–1277. https://doi.org/10.1126/science.aaf4507

    Article  PubMed  CAS  Google Scholar 

  55. Vanwonterghem I, Jensen PD, Rabaey K, Tyson GW (2016) Genome-centric resolution of microbial diversity, metabolism and interactions in anaerobic digestion. Environ Microbiol 18:3144–3158. https://doi.org/10.1111/1462-2920.13382

    Article  PubMed  CAS  Google Scholar 

  56. Wang X, Wen X, Yan H et al (2011) Bacterial community dynamics in a functionally stable pilot-scale wastewater treatment plant. Bioresour Technol 102:2352–2357. https://doi.org/10.1016/J.BIORTECH.2010.10.095

    Article  PubMed  CAS  Google Scholar 

  57. Wells GF, Park H-D, Yeung C-H et al (2009) Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundance of Crenarchaea. Environ Microbiol 11:2310–2328. https://doi.org/10.1111/j.1462-2920.2009.01958.x

    Article  PubMed  CAS  Google Scholar 

  58. Galand PE, Pereira O, Hochart C, Auguet JC, Debroas D (2018) A strong link between marine microbial community composition and function challenges the idea of functional redundancy. ISME J 12:2470–2478. https://doi.org/10.1038/s41396-018-0158-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors thanks the Ministry of Economic Development, Job Creation and Trade for the support of Ontario Research Fund-Research Excellence (ORF-RE), and the Guelph Wastewater Treatment Plant for providing samples and processing information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Chang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 718 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Wang, M. & Chang, S. Disentangling Community Structure of Ecological System in Activated Sludge: Core Communities, Functionality, and Functional Redundancy. Microb Ecol 80, 296–308 (2020). https://doi.org/10.1007/s00248-020-01492-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01492-y

Keywords

Navigation