Skip to main content
Log in

Closely Related Male-Killing and Nonmale-Killing Wolbachia Strains in the Oriental Tea Tortrix Homona magnanima

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Wolbachia are inherited intracellular bacteria that cause male-specific death in some arthropods, called male-killing. To date, three Wolbachia strains have been identified in the oriental tea tortrix Homona magnanima (Tortricidae, Lepidoptera); however, none of these caused male-killing in the Japanese population. Here, we describe a male-killing Wolbachia strain in Taiwanese H. magnanima. From field-collected H. magnanima, two female-biased host lines were established, and antibiotic treatments revealed Wolbachia (wHm-t) as the causative agent of male-killing. The wsp and MLST genes in wHm-t are identical to corresponding genes in the nonmale-killing strain wHm-c from the Japanese population, implying a close relationship of the two strains. Crossing the Japanese and Taiwanese H. magnanima revealed that Wolbachia genotype rather than the host genetic background was responsible for the presence of the male-killing phenotype. Quantitative PCR analyses revealed that the density of wHm-t was higher than that of other Wolbachia strains in H. magnanima, including wHm-c. The densities of wHm-t were also heterogeneous between host lines. Notably, wHm-t in the low-density and high-density lines carried identical wsp and MLST genes but had distinct lethal patterns. Furthermore, over 90% of field-collected lines of H. magnanima in Taiwan were infected with wHm-t, although not all host lines harboring wHm-t showed male-killing. The host lines that showed male-killing harbored a high density of Wolbachia compared to the host lines that did not show male-killing. Thus, the differences in the phenotypes appear to be dependent on biological and genetic characteristics of closely related Wolbachia strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstädter J, Hurst GDD (2008) The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol 6:27

    PubMed  PubMed Central  Google Scholar 

  2. Gibson CM, Hunter MS (2010) Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol Lett 13:223–234

    PubMed  Google Scholar 

  3. Roossinck MJ (2015) Plants, viruses and the environment: ecology and mutualism. Virology 479:271–277

    PubMed  Google Scholar 

  4. Bright M, Bulgheresi S (2010) A complex journey: transmission of microbial symbionts. Nat Rev Microbiol 8:218–230

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Werren JH, O’Neill SL (1997) The evolution of heritable symbionts. In: O’Neill SL, Hoffmann AA, Werren JH (eds) Influential passengers: inherited microorganisms and arthropod reproduction. Oxford University Press, Oxford, pp 1–41

    Google Scholar 

  6. Zug R, Hammerstein P (2012) Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One 7:e38544

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751

    CAS  PubMed  Google Scholar 

  8. Hurst GDD, Bandi C, Sacchi L, Cochrane AG, Bertrand D, Karaca I, Majerus MEN (1999) Adonia variegata (Coleoptera: Coccinellidae) bears maternally inherited Flavobacteria that kill males only. Parasitology 118:125–134

    PubMed  Google Scholar 

  9. Morimoto S, Nakai M, Ono A, Kunimi Y (2001) Late male-killing phenomenon found in a Japanese population of the oriental tea tortrix, Homona magnanima (Lepidoptera: Tortricidae). Heredity 87:435–440

    CAS  PubMed  Google Scholar 

  10. Jaenike J (2007) Spontaneous emergence of a new Wolbachia phenotype. Evolution 61:2244–2252

    PubMed  Google Scholar 

  11. Engelstädter J, Hurst GDD (2009) The ecology and evolution of microbes that manipulate host reproduction. Annu Rev Ecol Evol Syst 40:127–149

    Google Scholar 

  12. Harumoto T, Lemaitre B (2018) Male-killing toxin in a bacterial symbiont of Drosophila. Nature 557:252–255

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fukui T, Kawamoto M, Shoji K, Kiuchi T, Sugano S, Shimada T, Suzuki Y, Katsuma S (2015) The endosymbiotic bacterium Wolbachia selectively kills male hosts by targeting the masculinizing gene. PLoS Pathog 11:e1005048

    PubMed  PubMed Central  Google Scholar 

  14. Harumoto T, Anbutsu H, Lemaitre B, Fukatsu T (2016) Male-killing symbiont damages host’s dosage-compensated sex chromosome to induce embryonic apoptosis. Nat Commun 7:12781

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Perlmutter JI, Bordenstein SR, Unckless RL, LePage DP, Metcalf JA, Hill T, Martinez J, Jiggins FM, Bordenstein SR (2019) The phage gene wmk is a candidate for male killing by a bacterial endosymbiont. PLoS Pathog 15:e1007936

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hurst GDD, Johnson AP, Schulenburg JHGVD, Fuyama Y (2000) Male-killing Wolbachia in Drosophila: a temperature-sensitive trait with a threshold bacterial density. Genetics 156:699–709

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kondo N, Shimada M, Fukatsu T (2005) Infection density of Wolbachia endosymbiont affected by co-infection and host genotype. Biol Lett 1:488–491

    PubMed  PubMed Central  Google Scholar 

  18. Watanabe M, Miura K, Hunter MS, Wajnberg E (2011) Superinfection of cytoplasmic incompatibility-inducing Wolbachia is not additive in Orius strigicollis (Hemiptera: Anthocoridae). Heredity 106:642–648

    CAS  PubMed  Google Scholar 

  19. Arai H, Hirano T, Akizuki N, Abe A, Nakai M, Kunimi Y, Inoue MN (2019) Multiple infection and reproductive manipulations of Wolbachia in Homona magnanima (Lepidoptera: Tortricidae). Microb Eco 77:257–266

    Google Scholar 

  20. Sasaki T, Ishikawa H (1999) Wolbachia infections and cytoplasmic incompatibility in the almond moth and the Mediterranean flour moth. Zool Sci 16:739–744

    Google Scholar 

  21. Sasaki T, Kubo T, Ishikawa H (2002) Interspecific transfer of Wolbachia between two lepidopteran insects expressing cytoplasmic incompatibility: a Wolbachia variant naturally infecting Cadra cautella causes male killing in Ephestia kuehniella. Genetics 162:1313–1319

    PubMed  PubMed Central  Google Scholar 

  22. Kageyama D, Wang CH, Hatakeyama M (2017) Wolbachia infections of the butterfly Eurema mandarina interfere with embryonic development of the sawfly Athalia rosae. J Invertebr Pathol 150:76–81

    PubMed  Google Scholar 

  23. Hornett EA, Charlat S, Duplouy AMR, Davies N, Roderick GK, Wedell N, Hurst GDD (2006) Evolution of male-killer suppression in a natural population. PLoS Biol 4:e283

    PubMed  PubMed Central  Google Scholar 

  24. Tsugeno Y, Koyama H, Takamatsu T, Nakai M, Kunimi Y, Inoue MN (2017) Identification of an early male-killing agent in the oriental tea tortrix, Homona magnanima. J Hered 108:553–560

    CAS  PubMed  Google Scholar 

  25. Nakanishi K, Hoshino M, Nakai M, Kunimi Y (2008) Novel RNA sequences associated with late male killing in Homona magnanima. P Roy Soc B-Biol Sci 275:1249–1254

    CAS  Google Scholar 

  26. Hoshino M, Nakanishi K, Nakai M, Kunimi Y (2008) Gross morphology and histopathology of male-killing strain larvae in the oriental tea tortrix, Homona magnanima (Lepidoptera: Tortricidae). Appl Entomol Zool 43:119–125

    Google Scholar 

  27. Baldo L, Hotopp JCD, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR, Hayashi C, Maiden MCJ, Tettelin H, Werren JH (2006) Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 72:7098–7110

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kageyama D, Traut W (2004) Opposite sex–specific effects of Wolbachia and interference with the sex determination of its host Ostrinia scapulalis. P Roy Soc B-Biol Sci 271:251–258

    Google Scholar 

  29. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dyson EA, Kamath MK, Hurst GDD (2002) Wolbachia infection associated with all-female broods in Hypolimnas bolina (Lepidoptera: Nymphalidae): evidence for horizontal transmission of a butterfly male killer. Heredity 88:166–171

    CAS  PubMed  Google Scholar 

  32. Hornett EA, Moran B, Reynolds LA, Charlat S, Tazzyman S, Wedell N, Jiggins CD, Hurst GD (2014) The evolution of sex ratio distorter suppression affects a 25 cM genomic region in the butterfly Hypolimnas bolina. PLoS Gen 10:e1004822

    Google Scholar 

  33. Reynolds LA, Hornett EA, Jiggins CD, Hurst GD (2019) Suppression of Wolbachia-mediated male-killing in the butterfly Hypolimnas bolina involves a single genomic region. PeerJ 7:e7677

    PubMed  PubMed Central  Google Scholar 

  34. Hensel M (2000) Salmonella pathogenicity island 2. Mol Microbiol 36:1015–1023

    CAS  PubMed  Google Scholar 

  35. Deiwick J, Nikolaus T, Shea JE, Gleeson C, Holden DW, Hensel M (1998) Mutations in Salmonella pathogenicity island 2 (SPI2) genes affecting transcription of SPI1 genes and resistance to antimicrobial agents. J Bacteriol 180:4775–4780

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ellegaard KM, Klasson L, Näslund K, Bourtzis K, Andersson SG (2013) Comparative genomics of Wolbachia and the bacterial species concept. PLoS Genet 9:e1003381

    CAS  PubMed  PubMed Central  Google Scholar 

  37. LePage DP, Metcalf JA, Bordenstein SR, On J, Perlmutter JI, Shropshire JD, Layton EM, Funkhouser-Jones LJ, Beckmann JF, Bordenstein SR (2017) Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543:243–247

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Min KT, Benzer S (1997) Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc Natl Acad Sci U S A 94:10792–10796

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chrostek E, Teixeira L (2015) Mutualism breakdown by amplification of Wolbachia genes. PLoS Biol 13:e1002065

    PubMed  PubMed Central  Google Scholar 

  40. Charlat S, Davies N, Roderick GK, Hurst GDD (2007) Disrupting the timing of Wolbachia-induced male-killing. Biol Lett 3:154–156

    PubMed  PubMed Central  Google Scholar 

  41. Casadevall A, Pirofski LA (1999) Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect Immun 67:3703–3713

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Login FH, Balmand S, Vallier A, Vincent-Monégat C, Vigneron A, Weiss-Gayet M, Rochat D, Heddi A (2011) Antimicrobial peptides keep insect endosymbionts under control. Science 334:362–365

    CAS  PubMed  Google Scholar 

  43. Enomoto S, Chari A, Clayton AL, Dale C (2017) Quorum sensing attenuates virulence in Sodalis praecaptivus. Cell Host Microbe 21:629–636

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ebbert MA (1991) The interaction phenotype in the Drosophila willistoni-Spiroplasma symbiosis. Evolution 45:971–988

    PubMed  Google Scholar 

  45. Xie J, Butler S, Sanchez G, Mateos M (2014) Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps. Heredity 112:399

    CAS  PubMed  Google Scholar 

  46. Hurst GDD, Jiggins FM (2000) Male-killing bacteria in insects: mechanisms, incidence, and implications. Emerg Infect Dis 6:329–336

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ballinger MJ, Perlman SJ (2017) Generality of toxins in defensive symbiosis: ribosome-inactivating proteins and defense against parasitic wasps in Drosophila. PLoS Pathog 13:e1006431

    PubMed  PubMed Central  Google Scholar 

  48. Masson F, Copete SC, Schüpfer F, Garcia-Arraez G, Lemaitre B (2018) In vitro culture of the insect endosymbiont Spiroplasma poulsonii highlights bacterial genes involved in host-symbiont interaction. mBio 9:e00024-18

    PubMed  PubMed Central  Google Scholar 

  49. Pichon S, Bouchon D, Cordaux R, Chen L, Garrett RA, Grève P (2009) Conservation of the type IV secretion system throughout Wolbachia evolution. Biochem Bioph Res Commun 385:557–562

    CAS  Google Scholar 

  50. Sheehan KB, Martin M, Lesser CF, Isberg RR, Newton ILG (2016) Identification and characterization of a candidate Wolbachia pipientis type IV effector that interacts with the actin cytoskeleton. mBio 7:e00622-16

    PubMed  PubMed Central  Google Scholar 

  51. Rice DW, Sheehan KB, Newton ILG (2017) Large-scale identification of Wolbachia pipientis effectors. Genome Biol Evol 9:1925–1937

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Utugi Jimbo (National Museum of Nature and Science, Tokyo, Japan) for morphological identification of Taiwanese population of H. magnanima and Dr. Katsuhiko Ito (Tokyo University of Agriculture and Technology, Tokyo, Japan) for lending us the StepOnePlus™ real-time PCR system (Applied Biosystems, Tokyo, Japan). We also thank Dr. Hisashi Anbutsu (National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan) and Professor Greg Hurst (Institute of Integrative Biology, University of Liverpool, Liverpool, UK) for revising the manuscript.

Data Archiving

The sequence data of wsp and MLST genes of wHm-t were deposited in GenBank under accession numbers LC427375 to LC427380.

Author information

Authors and Affiliations

Authors

Contributions

In this work, HA conducted field surveys, all experiments, and data analysis. SRL organized to collect insects in Taiwan and contributed to the discussion. MN supported the entire experiments and contributed to the discussion. YK sampled insects in Taiwanese tea field and contributed to the entire discussions of this study. Lastly, MNI had full access to all data and had responsibility for the decision to submit for publication.

Corresponding author

Correspondence to Maki N. Inoue.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arai, H., Lin, S.R., Nakai, M. et al. Closely Related Male-Killing and Nonmale-Killing Wolbachia Strains in the Oriental Tea Tortrix Homona magnanima. Microb Ecol 79, 1011–1020 (2020). https://doi.org/10.1007/s00248-019-01469-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-019-01469-6

Keywords

Navigation