Skip to main content

Advertisement

Log in

Eutrophication and Related Antibiotic Resistance of Enterococci in the Minjiang River, China

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Antimicrobial resistance (AMR) in the aquatic environment has received increasing attention in recent years, and growing eutrophication problems may contribute to AMR in aquatic ecosystems. To evaluate whether and how eutrophication affects AMR, 40 surface water samples were collected from the Minjiang River, Fujian Province, China. Total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (CODMn) were measured as eutrophication factors. Additionally, enterococci species were isolated and their resistance to six common antibiotics was tested. Eutrophication generally showed a trend of increasing with the flow direction of the Minjiang River, with 25 sites (62.5%) having a TN/TP value over the Redfield value (16:1), which indicated that eutrophication in this region was of phosphorus limitation. High nutrition sites were in or near urban areas. Poor quality water was found in the middle and lower reaches of the Minjiang River system. The resistance frequency of 40 enterococci isolates to the six antibiotics tested was as follows: oxytetracycline > erythromycin > ciprofloxacin > chloramphenicol > ampicillin > vancomycin (70, 50, 17.5, 12.5, 2.5, 0%), and the multi-resistant rate reached 50% with eight resistance phenotypes. AMR also increased along the direction of water flow downstream, and most of the sites with the highest AMR were in or near urban areas, as was true for nutrition levels. Positive correlations between AMR and eutrophication factors (TN, TP, and CODMn) were identified using the Pearson’s correlation coefficient, and TN/TP generally was negatively related to AMR. These results indicated that eutrophication may induce or selective for resistance of water-borne pathogens to antibiotics, with a high resistance level and a wide resistance spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gothwal R, Shashidhar T (2015) Antibiotic pollution in the environment: a review. Clean-Soil Air Water 43(4):479–489. https://doi.org/10.1002/clen.201300989

    Article  CAS  Google Scholar 

  2. Kummerer K (2009) Antibiotics in the aquatic environment--a review--part I. Chemosphere 75(4):417–434. https://doi.org/10.1016/j.chemosphere.2008.11.086

    Article  CAS  PubMed  Google Scholar 

  3. Ribeiro AR, Sures B, Schmidt TC (2018) Cephalosporin antibiotics in the aquatic environment: a critical review of occurrence, fate, ecotoxicity and removal technologies. Environ Pollut 241:1153–1166. https://doi.org/10.1016/j.envpol.2018.06.040

    Article  CAS  PubMed  Google Scholar 

  4. Bueno I, Williams-Nguyen J, Hwang H, Sargeant JM, Nault AJ, Singer RS (2017) Impact of point sources on antibiotic resistance genes in the natural environment: a systematic review of the evidence. Anim Health Res Rev 18(2):112–127. https://doi.org/10.1017/S146625231700007X

    Article  PubMed  Google Scholar 

  5. Yang Y, Song W, Lin H, Wang W, Du L, Xing W (2018) Antibiotics and antibiotic resistance genes in global lakes: a review and meta-analysis. Environ Int 116:60–73. https://doi.org/10.1016/j.envint.2018.04.011

    Article  CAS  PubMed  Google Scholar 

  6. Pruden A, Pei RT, Storteboom H, Carlson KH (2006) Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environ Sci Technol 40(23):7445–7450. https://doi.org/10.1021/es0604131

    Article  CAS  PubMed  Google Scholar 

  7. Allen DA, Austin B, Colwell RR (1977) Antibiotic resistance patterns of metal-tolerant bacteria isolated from an estuary. Antimicrob Agents Chemother 12(4):545–547

    Article  CAS  Google Scholar 

  8. Jjemba PK (2006) Excretion and ecotoxicity of pharmaceutical and personal care products in the environment. Ecotox Environ Safe 63(1):113–130. https://doi.org/10.1016/j.ecoenv.2004.11.011

    Article  CAS  Google Scholar 

  9. Lienert J, Burki T, Escher BI (2007) Reducing micropollutants with source control: substance flow analysis of 212 pharmaceuticals in faeces and urine. Water Sci Technol 56(5):87–96. https://doi.org/10.2166/wst.2007.560

    Article  CAS  PubMed  Google Scholar 

  10. Sjogren RE, Port J (1981) Heavy metal-antibiotic resistant bacteria in a lake recreational area. Water Air Soil Pollut. 15(1):29–44

    Article  Google Scholar 

  11. Zhen Y, Jia SY, Zhang TT, Ning Z, Dong YY, Yang WB, Wang YP (2015) How heavy metals impact on flocculation of combined pollution of heavy metals–antibiotics: a comparative study. Sep Purif Technol 149:398–406

    Article  Google Scholar 

  12. Matyar F, Gulnaz O, Guzeldag G, Mercimek HA, Akturk S, Arkut A, Sumengen M (2014) Antibiotic and heavy metal resistance in Gram-negative bacteria isolated from the Seyhan Dam Lake and Seyhan River in Turkey. Ann Microbiol 64(3):1033–1040. https://doi.org/10.1007/s13213-013-0740-8

    Article  CAS  Google Scholar 

  13. Calomiris JJ, Armstrong JL, Seidler RJ (1984) Association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water. Appl Environ Microbiol. 47(6):1238–1242

    Article  CAS  Google Scholar 

  14. Yu DJ, Lai BS, Li J, Ma YF, Yang F, Li Z, Luo XQ, Chen X, Huang YF (2012) Cornmeal-induced resistance to ciprofloxacin and erythromycin in enterococci. Chemosphere 89(1):70–75. https://doi.org/10.1016/j.chemosphere.2012.04.014

    Article  CAS  PubMed  Google Scholar 

  15. Yang F (2012) The effect of glucose on the formation of antibiotics resistance of water source Enterococcus. Fujian Agriculture and Forestry University

  16. Smolders AJP, Lamers LPM, Lucassen ECHET, Van der Velde G, Roelofs JGM (2006) Internal eutrophication: how it works and what to do about it - a review. Chem Ecol. 22(2):93–111. https://doi.org/10.1080/02757540600579730

    Article  CAS  Google Scholar 

  17. Lehtola MJ, Miettinen IT, Martikainen PJ (2002) Biofilm formation in drinking water affected by low concentrations of phosphorus. Can J Microbiol 48(6):494–499

    Article  CAS  Google Scholar 

  18. Singh NB, Singh PP, Kpp N (1986) Effect of legume intercropping on enrichment of soil nitrogen, bacterial activity and productivity of associated maize crops. Exp Agric 22(4):339–344

    Article  Google Scholar 

  19. Johnson PT, Townsend AR, Cleveland CC, Glibert PM, Howarth RW, McKenzie VJ, Rejmankova E, Ward MH (2010) Linking environmental nutrient enrichment and disease emergence in humans and wildlife. Ecol Appl 20(1):16–29

    Article  Google Scholar 

  20. Thevenon F, Adatte T, Wildi W, Pote J (2012) Antibiotic resistant bacteria/genes dissemination in lacustrine sediments highly increased following cultural eutrophication of Lake Geneva (Switzerland). Chemosphere 86(5):468–476. https://doi.org/10.1016/j.chemosphere.2011.09.048

    Article  CAS  PubMed  Google Scholar 

  21. Zhao Z, Wang J, Han Y, Chen J, Liu G, Lu H, Yan B, Chen S (2017) Nutrients, heavy metals and microbial communities co-driven distribution of antibiotic resistance genes in adjacent environment of mariculture. Environ Pollut 220(Pt B):909–918. https://doi.org/10.1016/j.envpol.2016.10.075

    Article  CAS  PubMed  Google Scholar 

  22. Mcphearson RM, Depaola A, Zywno SR, Jr MLM, Guarino AM (1991) Antibiotic resistance in gram-negative bacteria from cultured catfish and aquaculture ponds. Aquaculture 99(3–4):203–211

    Article  Google Scholar 

  23. Chen XP, Xiao ZL, Lin J, Wang YQ, Zhang J, Huang QF, Yu DJ (2016) Effect of nitrogen and phosphorous on tetracycline resistance of Escherichia coli. Acta Aquaculture Zhejiangensis 28(2):247–251

    Google Scholar 

  24. Huang QF, Chen XP, Chen YH, Xiao ZR, Qiu JL, Xu C, Yu DJ (2015) Effect of eutrophication on drug resistance and expression of outer membrane protein OmpF of Escherichia coli. Anim Husb Vet Med 47(5):88–92

    CAS  Google Scholar 

  25. Huang QF, Chen XP, Lin J, Zhang J, Wang YQ, Yu DJ (2015) Study on effect of nitrogen and phosphorous on the resistance of Escherichia coli to chloramphenicol and its mechanism. China Anim Husb Vet Med 42(6):1580–1586

    CAS  Google Scholar 

  26. Ali L, Wang YQ, Zhang J, Ajmal M, Xiao Z, Wu J, Chen JL, Yu D (2016) Nutrient-induced antibiotic resistance in Enterococcus faecalis in the eutrophic environment. J Glob Antimicrob Resist 7:78–83. https://doi.org/10.1016/j.jgar.2016.07.014

    Article  PubMed  Google Scholar 

  27. Mohamed JA, Huang DB (2007) Biofilm formation by enterococci. J Med Microbiol 56(Pt 12):1581–1588. https://doi.org/10.1099/jmm.0.47331-0

    Article  CAS  PubMed  Google Scholar 

  28. System NNIS (2004) National Nosocomial Infections Surveillance (NNIS) System report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control 32(8):470

    Article  Google Scholar 

  29. Creti R, Imperi M, Bertuccini L, Fabretti F, Orefici G, Di Rosa R, Baldassarri L (2004) Survey for virulence determinants among Enterococcus faecalis isolated from different sources. J Med Microbiol 53(Pt 1):13–20. https://doi.org/10.1099/jmm.0.05353-0

    Article  CAS  PubMed  Google Scholar 

  30. Gao W, Howden BP, Stinear TP (2018) Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Curr Opin Microbiol 41:76–82. https://doi.org/10.1016/j.mib.2017.11.030

    Article  PubMed  Google Scholar 

  31. Goudarzi M, Mobarez A, Mohabati NS, Mirzaee M (2018) Prevalence of biofilm formation and vancomycin-resistant genes among Enterococcus faecium isolated from clinical and environmental specimens in Lorestan hospitals. Iran J Microbiol 10(2):74–81

    PubMed  PubMed Central  Google Scholar 

  32. Iversen A, Kühn I, Rahman M, Franklin A, Burman LG, Olsson-Liljequist B, Torell E, Möllby R (2010) Evidence for transmission between humans and the environment of a nosocomial strain of Enterococcus faecium. Environ Microbiol 6(1):55–59

    Article  Google Scholar 

  33. Leroy F, Vankrunkelsven S, De Greef J, De Vuyst L (2003) The stimulating effect of a harsh environment on the bacteriocin activity by Enterococcus faecium RZS C5 and dependency on the environmental stress factor used. Int J Food Microbiol 83(1):27–38. https://doi.org/10.1016/S0168-1605(02)00316-1

    Article  CAS  PubMed  Google Scholar 

  34. Shepard BD, Gilmore MS (2002) Antibiotic-resistant enterococci: the mechanisms and dynamics of drug introduction and resistance. Microbes Infect. 4(2):215–224

    Article  CAS  Google Scholar 

  35. van Harten RM, Willems RJL, Martin NI, Hendrickx APA (2017) Multidrug-resistant Enterococcal infections: new compounds, novel antimicrobial therapies? Trends Microbiol. 25(6):467–479. https://doi.org/10.1016/j.tim.2017.01.004

    Article  CAS  PubMed  Google Scholar 

  36. Hollenbeck BL, Rice LB (2012) Intrinsic and acquired resistance mechanisms in enterococcus. Virulence 3(5):421–433. https://doi.org/10.4161/viru.21282

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jiang W, Li MX, Lin RG, Tian SC (2011) Progress on Enterococcus. Prog Vet Med 32(5):94–98

    Google Scholar 

  38. Paulo MC, Paulo V, Fernando B (2006) Antimicrobial resistance in Enterococcus spp. isolated in inflow, effluent and sludge from municipal sewage water treatment plants. Water Res. 40(8):1735–1740

    Article  Google Scholar 

  39. Arias CA, Murray BE (2012) The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol 10(4):266–278. https://doi.org/10.1038/nrmicro2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Petersen A, Andersen JS, Kaewmak T, Somsiri T, Dalsgaard A (2002) Impact of integrated fish farming on antimicrobial resistance in a pond environment. Appl Environ Microbiol 68(12):6036–6042

    Article  CAS  Google Scholar 

  41. Petersen A, Dalsgaard A (2003) Antimicrobial resistance of intestinal Aeromonas spp. and Enterococcus spp. in fish cultured in integrated broiler-fish farms in Thailand. Aquaculture 219(1–4):71–82. https://doi.org/10.1016/S0044-8486(03)00018-8

    Article  CAS  Google Scholar 

  42. Fisher K, Phillips C (2009) The ecology, epidemiology and virulence of Enterococcus. Microbiology 155(Pt 6):1749–1757. https://doi.org/10.1099/mic.0.026385-0

    Article  CAS  PubMed  Google Scholar 

  43. Kühn I, Iversen A, Burman LG, Liljequist B, Franklin A, Finn M, Aarestrup F, Seyfarth AM, Blanch A, Taylor H, Caplin J, Moreno M, Dominguez L, Möllby R (2000) Epidemiology and ecology of enterococci, with special reference to antibiotic resistant strains, in animals, humans and the environment - Example of an ongoing project within the European research programme 14. https://doi.org/10.1016/S0924-8579(00)00146-1

  44. Lei YZ (2006) Chemistry experiment of aquaculture environment China Agricultural Press

  45. MEEPRC (2002) The quality standard and limit of surface water environment of China (GB3838–2002). Ministry of Ecology and Environment of the People’s Republic of China

  46. Wang XC, Wang SQ, Wang BZ, Cao SZ, Zhou X (2012) Study on the isolation, identification and drug resistance of Enterococcus from different animal sources. J Anhui Agri 40(23):11688–11690

    CAS  Google Scholar 

  47. CLSI (2018) M100: performance standards for antimicrobial susceptibility testing, 28th. CLSI

  48. Xiong Y, Zhang JZ (1995) Hydrological divisions of China. Science Press of Beijing

  49. Huang ZY (1993) Analysis and evaluation of water quality status and pollution characteristics of Main Rivers in Fujian Province. Hydrology (S1):46–49

  50. Duan Y, Zhang YZ, Li YF, Niu ZY (2007) Pollution load and environmental risk assessment of livestock manure in Minjiang River valley. J Ecol Rural Environ 23(3):55–59

    CAS  Google Scholar 

  51. Zhang SH (2009) Investigation and trend analysis of eutrophication in the upper reaches of Minjiang River. Chem Eng Equip 10:178–181

    Google Scholar 

  52. FPDEE (2019) Ecological environment bulletin of Fujian Provience, 2018. Fujian Proviencial Department of Ecology and Environment, Fujian Proviencial Department of Ecology and Environment

  53. Chai C, Yu ZM, Song XX, Cao XH (2006) The status and characteristics of eutrophication in the Yangtze River (Changjiang) estuary and the adjacent East China Sea, China. Hydrobiologia 563:313–328

    Article  CAS  Google Scholar 

  54. Zhang J, Yan J, Zhang ZF (1995) Nationwide river chemistry trends in China: Huanghe and Changjiang. Ambio 24(5):275–279

    CAS  Google Scholar 

  55. Zheng S, Qiu X, Chen B, Yu X, Liu Z, Zhong G, Li H, Chen M, Sun G, Huang H, Yu W, Freestone D (2011) Antibiotics pollution in Jiulong River estuary: source, distribution and bacterial resistance. Chemosphere 84(11):1677–1685. https://doi.org/10.1016/j.chemosphere.2011.04.076

    Article  CAS  PubMed  Google Scholar 

  56. Tao R, Ying GG, Su HC, Zhou HW, Sidhu JP (2010) Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China. Environ Pollut 158(6):2101–2109. https://doi.org/10.1016/j.envpol.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  57. Ham YS, Kobori H, Kang JH, Matsuzaki T, Iino M, Nomura H (2012) Distribution of antibiotic resistance in urban watershed in Japan. Environ Pollut 162:98–103. https://doi.org/10.1016/j.envpol.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  58. Su HC, Ying GG, Tao R, Zhang RQ, Zhao JL, Liu YS (2012) Class 1 and 2 integrons, sul resistance genes and antibiotic resistance in Escherichia coli isolated from Dongjiang River, South China. Environ Pollut 169:42–49. https://doi.org/10.1016/j.envpol.2012.05.007

    Article  CAS  PubMed  Google Scholar 

  59. Ash RJ, Mauck B, Morgan M (2002) Antibiotic resistance of gram-negative bacteria in rivers, United States. Emerg. Infect. Dis. 8(7):713–716. https://doi.org/10.3201/eid0807.010264

    Article  PubMed  PubMed Central  Google Scholar 

  60. Maniatis AN, Pournaras S, Kanellopoulou M, Kontos F, Dimitroulia E, Papafrangas E, Tsakris A (2001) Dissemination of clonally unrelated erythromycin- and glycopeptide-resistant Enterococcus faecium isolates in a tertiary Greek hospital. J Clin Microbiol 39(12):4571–4574. https://doi.org/10.1128/JCM.39.12.4571-4574.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zou LK, Wang HN, Zeng B, Li JN, Li XT, Zhang AY, Zhou YS, Yang X, Xu CW, Xia QQ (2011) Erythromycin resistance and virulence genes in Enterococcus faecalis from swine in China. New Microbiol 34(1):73–80

    CAS  PubMed  Google Scholar 

  62. Werner G, Hildebrandt B, Witte W (2003) Linkage of erm(B) and aadE-sat4-aphA-3 in multiple-resistant Enterococcus faecium isolates of different ecological origins. Microb Drug Resist 9(Suppl 1):S9–S16. https://doi.org/10.1089/107662903322541847

    Article  CAS  PubMed  Google Scholar 

  63. Van BF, Balzi E, Tulkens PM (2000) Antibiotic efflux pumps. Biochem Pharmacol 60(4):457–470

    Article  Google Scholar 

  64. Pepeljnjak S, Kosalec I (2010) Galangin expresses bactericidal activity against multiple-resistant bacteria: MRSA Enterococcus spp. and Pseudomonas aeruginosa. FEMS Microbiol Lett 240(1):111–116

    Article  Google Scholar 

  65. Zgurskaya HI (2002) Molecular analysis of efflux pump-based antibiotic resistance. Int J Med Microbiol 292(2):95–105. https://doi.org/10.1078/1438-4221-00195

    Article  CAS  PubMed  Google Scholar 

  66. Bilker WB, Brennan PJ (1998) The role of chloramphenicol in the treatment of bloodstream infection due to vancomycin-resistant Enterococcus. Clin Infect Dis 27(5):1259–1265

    Article  Google Scholar 

  67. Hummel A, Holzapfel WH, Franz CM (2007) Characterisation and transfer of antibiotic resistance genes from enterococci isolated from food. Syst Appl Microbiol 30(1):1–7. https://doi.org/10.1016/j.syapm.2006.02.004

    Article  CAS  PubMed  Google Scholar 

  68. Farley M (2012) Eutrophication in fresh waters: an international review. Springer, Netherlands

    Google Scholar 

  69. Wang X, Gu J, Gao H, Qian X, Li H (2018) Abundances of clinically relevant antibiotic resistance genes and bacterial community diversity in the Weihe River, China. Int J Env Res Pub He 15(4):708–722. https://doi.org/10.3390/ijerph15040708

    Article  CAS  Google Scholar 

  70. Zhou ZC, Zheng J, Wei YY, Chen T, Dahlgren RA, Shang X, Chen H (2017) Antibiotic resistance genes in an urban river as impacted by bacterial community and physicochemical parameters. Environ Sci Pollut R 24(30):23753–23762. https://doi.org/10.1007/s11356-017-0032-0

    Article  CAS  Google Scholar 

  71. Proia L, Anzil A, Subirats J, Borrego C, Farre M, Llorca M, Balcazar JL, Servais P (2018) Antibiotic resistance along an urban river impacted by treated wastewaters. Sci Total Environ 628-629:453–466. https://doi.org/10.1016/j.scitotenv.2018.02.083

    Article  CAS  PubMed  Google Scholar 

  72. Baquero F, Martinez JL, Canton R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotech 19(3):260–265. https://doi.org/10.1016/j.copbio.2008.05.006

    Article  CAS  PubMed  Google Scholar 

  73. Alonso A, Sánchez P, Martínez JL (2010) Environmental selection of antibiotic resistance genes. Environ Microbiol 3(1):1–9

    Article  Google Scholar 

  74. Korzeniewska E, Korzeniewska A, Harnisz M (2013) Antibiotic resistant Escherichia coli in hospital and municipal sewage and their emission to the environment. Ecotox Environ Safe 91:96–102. https://doi.org/10.1016/j.ecoenv.2013.01.014

    Article  CAS  Google Scholar 

  75. Davison J (1999) Genetic exchange between bacteria in the environment. Plasmid 42(2):73–91

    Article  CAS  Google Scholar 

  76. Sidrach-Cardona R, Hijosa-Valsero M, Marti E, Balcazar JL, Becares E (2014) Prevalence of antibiotic-resistant fecal bacteria in a river impacted by both an antibiotic production plant and urban treated discharges. Sci Total Environ. 488:220–227. https://doi.org/10.1016/j.scitotenv2014.04.100

    Article  PubMed  Google Scholar 

  77. Caille O, Rossier C, Perron K (2007) A copper-activated two-component system interacts with zinc and imipenem resistance in Pseudomonas aeruginosa. J Bacteriol. 189(13):4561–4568. https://doi.org/10.1128/JB.00095-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Berg J, Thorsen MK, Holm PE, Jensen J, Nybroe O, Brandt KK (2010) Cu exposure under field conditions coselects for antibiotic resistance as determined by a novel cultivation-independent bacterial community tolerance assay. Environ Sci Technol 44(22):8724–8728. https://doi.org/10.1021/es101798r

    Article  CAS  PubMed  Google Scholar 

  79. Essa AM, Julian DJ, Kidd SP, Brown NL, Hobman JL (2003) Mercury resistance determinants related to Tn21, Tn1696, and Tn5053 in enterobacteria from the preantibiotic era. Antimicrob Agents Chemother 47(3):1115–1119

    Article  CAS  Google Scholar 

  80. Hernandez A, Mellado RP, Martinez JL (1998) Metal accumulation and vanadium-induced multidrug resistance by environmental isolates of Escherichia hermannii and Enterobacter cloacae. Appl Environ Microbiol 64(11):4317–4320

    Article  CAS  Google Scholar 

  81. Ostensvik O, Skulberg OM, Underdal B, Hormazabal V (2010) Antibacterial properties of extracts from selected planktonic freshwater cyanobacteria--a comparative study of bacterial bioassays. J Appl Microbiol 84(6):1117–1124

    Article  Google Scholar 

  82. Piccardi R, Frosini A, Tredici MR, Margheri MC (2000) Bioactivity in free-living and symbiotic cyanobacteria of the genus Nostoc. J Appl Phycol 12(3–5):543–547

    Article  Google Scholar 

  83. Dixon RA, Alnazawi M, Alderson G (2010) Permeabilising effects of sub-inhibitory concentrations of microcystin on the growth of Escherichia coli. FEMS Microbiol Lett 230(2):167–170

    Article  Google Scholar 

Download references

Funding

This research was financially supported by the grants from the State Key Development Program during the 13th Five-Year Plan period (Grant no. 2016YFD0501310), the Natural Science Foundation of China (NSFC 31272606 and 31602106), and the Natural Science Foundation of Fujian province, China (2017J01598).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dao-jin Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Xd., Chen, Yh., Liu, C. et al. Eutrophication and Related Antibiotic Resistance of Enterococci in the Minjiang River, China. Microb Ecol 80, 1–13 (2020). https://doi.org/10.1007/s00248-019-01464-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-019-01464-x

Keywords

Navigation