Skip to main content

Advertisement

Log in

Getting under the birds’ skin: tissue tropism of Borrelia burgdorferi s.l. in naturally and experimentally infected avian hosts

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Wild birds are frequently exposed to the zoonotic tick-borne bacteria Borrelia burgdorferi sensu lato (s.l.), and some bird species act as reservoirs for some Borrelia genospecies. Studying the tropism of Borrelia in the host, how it is sequestered in different organs, and whether it is maintained in circulation and/or in the host’s skin is important to understand pathogenicity, infectivity to vector ticks and reservoir competency.

We evaluated tissue dissemination of Borrelia in blackbirds (Turdus merula) and great tits (Parus major), naturally and experimentally infected with Borrelia genospecies from enzootic foci. We collected both minimally invasive biological samples (feathers, skin biopsies and blood) and skin, joint, brain and visceral tissues from necropsied birds. Infectiousness of the host was evaluated through xenodiagnoses and infection rates in fed and moulted ticks. Skin biopsies were the most reliable method for assessing avian hosts’ Borrelia infectiousness, which was supported by the agreement of infection status results obtained from the analysis of chin and lore skin samples from necropsied birds and of their xenodiagnostic ticks, including a significant correlation between the estimated concentration of Borrelia genome copies in the skin and the Borrelia infection rate in the xenodiagnostic ticks. This confirms a dermatropism of Borrelia garinii, B. valaisiana and B. turdi in its avian hosts. However, time elapsed from exposure to Borrelia and interaction between host species and Borrelia genospecies may affect the reliability of skin biopsies. The blood was not useful to assess infectiousness of birds, even during the period of expected maximum spirochetaemia. From the tissues sampled (foot joint, liver, spleen, heart, kidney, gut and brain), Borrelia was detected only in the gut, which could be related with infection mode, genospecies competition, genospecies-specific seasonality and/or excretion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Schmid-Hempel P (2009) Immune defence, parasite evasion strategies and their relevance for ‘macroscopic phenomena’ such as virulence. Philos Trans R Soc Lond Ser B Biol Sci 364:85–98. https://doi.org/10.1098/rstb.2008.0157

    Article  Google Scholar 

  2. Bernard Q, Jaulhac B, Boulanger N (2015) Skin and arthropods: an effective interaction used by pathogens in vector-borne diseases. Eur J Dermatol 25:18–22. https://doi.org/10.1684/ejd.2015.2550

    Article  CAS  PubMed  Google Scholar 

  3. Berndtson K (2013) Review of evidence for immune evasion and persistent infection in Lyme disease. Int J Gen Med 6:291–306. https://doi.org/10.2147/IJGM.S44114

    Article  PubMed  PubMed Central  Google Scholar 

  4. McCall L-I, Siqueira-Neto JL, McKerrow JH (2016) Location, location, location: five facts about tissue tropism and pathogenesis. PLoS Pathog 12:e1005519. https://doi.org/10.1371/journal.ppat.1005519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Valkiūnas G (2005) Avian malaria parasites and other haemosporidia. CRC Press, Boca Raton

    Google Scholar 

  6. Moore J (2013) An overview of parasite-induced behavioral alterations – and some lessons from bats. J Exp Biol 216:11–17. https://doi.org/10.1242/jeb.074088

    Article  PubMed  Google Scholar 

  7. Mendes L, Pardal S, Morais J, Antunes S, Ramos J, Perez-Tris J, Piersma T (2013) Hidden haemosporidian infections in Ruffs (Philomachus pugnax) staging in Northwest Europe en route from Africa to Arctic Europe. Parasitol Res 112:2037–2043. https://doi.org/10.1007/s00436-013-3362-y

    Article  PubMed  Google Scholar 

  8. Margos G, Vollmer SA, Ogden NH, Fish D (2011) Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato. Infect Genet Evol 11:1545–1563. https://doi.org/10.1016/j.meegid.2011.07.022

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stanek G, Reiter M (2011) The expanding Lyme Borrelia complex—clinical significance of genomic species? Clin Microbiol Infect 17:487–493. https://doi.org/10.1111/j.1469-0691.2011.03492.x

    Article  CAS  PubMed  Google Scholar 

  10. Mead PS (2015) Epidemiology of Lyme Disease. Infect Dis Clin N Am 29:187–210. https://doi.org/10.1016/j.idc.2015.02.010

    Article  Google Scholar 

  11. Kurtenbach K, Schäfer SM, de Michelis S, Etti S, Sewell H-S (2002) Borrelia burgdorferi sensu lato in the vertebrate host. In: Gray JS, Kahl O, Lane RS, Stanek G (eds) Lyme Borreliosis: biology, epidemiology and control. CABI Publishing, New York, pp 117–150

    Google Scholar 

  12. Kern A, Schnell G, Bernard Q, Bœuf A, Jaulhac B, Collin E, Barthel C, Ehret-Sabatier L, Boulanger N (2015) Heterogeneity of Borrelia burgdorferi sensu stricto population and its involvement in Borrelia pathogenicity: study on murine model with specific emphasis on the skin interface. PLoS One 10:e0133195. https://doi.org/10.1371/journal.pone.0133195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sertour N, Cotte V, Garnier M, Malandrin L, Ferquel E, Choumet V (2018) Infection kinetics and tropism of Borrelia burgdorferi sensu lato in mouse after natural (via ticks) or artificial (needle) infection depends on the bacterial strain. Front Microbiol 9:1722. https://doi.org/10.3389/fmicb.2018.01722

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang G, van Dam AP, Schwartz I, Dankert J (1999) Molecular typing of Borrelia burgdorferi sensu lato: taxonomic, epidemiological, and clinical implications. Clin Microbiol Rev 12:633–653

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Muehlenbachs A, Bollweg BC, Schulz TJ, Forrester JD, DeLeon Carnes M, Molins C, Ray GS, Cummings PM, Ritter JM, Blau DM, Andrew TA, Prial M, Ng DL, Prahlow JA, Sanders JH, Shieh WJ, Paddock CD, Schriefer ME, Mead P, Zaki SR (2016) Cardiac tropism of Borrelia burgdorferi: an autopsy study of sudden cardiac death associated with Lyme carditis. Am J Pathol 186:1195–1205. https://doi.org/10.1016/j.ajpath.2015.12.027

    Article  PubMed  Google Scholar 

  16. Norte A, de Carvalho I, Ramos J, Gonçalves M, Gern L, Núncio M (2012) Diversity and seasonal patterns of ticks parasitizing wild birds in western Portugal. Exp Appl Acarol 58:327–339. https://doi.org/10.1007/s10493-012-9583-4

    Article  CAS  PubMed  Google Scholar 

  17. Comstedt P, Bergstrom S, Olsen B, Garpmo U, Marjavaara L, Mejlon H, Barbour AG, Bunikis J (2006) Migratory passerine birds as reservoirs of Lyme borreliosis in Europe. Emerg Infect Dis 12:1087–1095

    PubMed  PubMed Central  Google Scholar 

  18. Heylen D, Fonville M, Docters van Leeuwen A, Stroo A, Duisterwinkel M, van Wieren SE, Diuk-Wasser M, de Bruin A, Sprong H (2017) Pathogen communities of songbird-derived ticks in Europe’s low countries. Parasit Vectors 10:497. https://doi.org/10.1186/s13071-017-2423-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Heylen D (2016) In: Braks MAH, van Wieren SE, Takken W, Sprong H (eds) Ecological interactions between songbirds, ticks, and Borrelia burgdorferi s.l. in Europe. Wageningen Academic Publishers, Wageningen, pp 91–101Ecology and control of vector-borne diseases

    Google Scholar 

  20. Bishop KL, Khan MI, Nielsen SW (1994) Experimental-infection of northern bobwhite quail with Borrelia burgdorferi. J Wildl Dis 30:506–513

    CAS  PubMed  Google Scholar 

  21. Isogai E, Tanaka S, Braga IS, Itakura C, Isogai H, Kimura K, Fujii N (1994) Experimental Borrelia garinii infection of Japanese quail. Infect Immun 62:3580–3582

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Olsen B, Gylfe Å, Bergström S (1996) Canary finches (Serinus canaria) as an avian infection model for Lyme borreliosis. Microb Pathog 20:319–324

    CAS  PubMed  Google Scholar 

  23. Moody KD, Terwilliger GA, Hansen GM, Barthold SW (1994) Experimental Borrelia burgdorferi infection in Peromyscus leucopus. J Wildl Dis 30:155–161. https://doi.org/10.7589/0090-3558-30.2.155

    Article  CAS  PubMed  Google Scholar 

  24. Norte AC, Costantini D, Araújo PM, Eens M, Ramos J, Heylen DH (2018) Experimental infection by microparasites affects the oxidative balance in their avian reservoir host the blackbird Turdus merula. Tick and Tick-borne Dis 9:720–729

    Google Scholar 

  25. Olsen B (2007) Borrelia. In: Thomas NJ, Hunter DB, Atkinson CT (eds) Infectious diseases of wild birds. Blackwell, Oxford, pp 341–351

    Google Scholar 

  26. Schwanz LE, Voordouw MJ, Brisson D, Ostfeld RS (2011) Borrelia burgdorferi has minimal impact on the Lyme disease reservoir host Peromyscus leucopus. Vector Borne Zoonotic Dis 11:117–124. https://doi.org/10.1089/vbz.2009.0215

    Article  PubMed  Google Scholar 

  27. Nordstrand A, Barbour AG, Bergstrom S (2000) Borrelia pathogenesis research in the post-genomic and post-vaccine era. Curr Opin Microbiol 3:86–92

    CAS  PubMed  Google Scholar 

  28. Grillon A, Westermann B, Cantero P, Jaulhac B, Voordouw MJ, Kapps D, Collin E, Barthel C, Ehret-Sabatier L, Boulanger N (2017) Identification of Borrelia protein candidates in mouse skin for potential diagnosis of disseminated Lyme borreliosis. Sci Rep 7:16719. https://doi.org/10.1038/s41598-017-16749-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gylfe A, Bergstrom S, Lunstrom J, Olsen B (2000) Epidemiology - reactivation of Borrelia infection in birds. Nature 403:724–725

    CAS  PubMed  Google Scholar 

  30. Humair PF, Postic D, Wallich R, Gern L (1998) An avian reservoir (Turdus merula) of the Lyme borreliosis spirochetes. Zbl Bakt - Int J Med Microbiol 287:521–538

    CAS  Google Scholar 

  31. Norte AC, Ramos JA, Gern L, Núncio MS, Lopes de Carvalho I (2013) Birds as reservoirs for Borrelia burgdorferi s.l. in Western Europe: circulation of B. turdi and other genospecies in bird-tick cycles in Portugal. Environ Microbiol 15:386–397. https://doi.org/10.1111/j.1462-2920.2012.02834.x

    Article  CAS  PubMed  Google Scholar 

  32. Hofmeester TR, Coipan EC, van Wieren SC, Prins HHT, Takken W, Sprong H (2016) Few vertebrate species dominate the Borrelia burgdorferi s.l. life cycle. Environ Res Lett 11:043001

    Google Scholar 

  33. Norte AC, Lopes de Carvalho I, Núncio MS, Ramos JA, Gern L (2013) Blackbirds Turdus merula as competent reservoirs for Borrelia turdi and Borrelia valaisiana in Portugal: evidence from a xenodiagnostic experiment. Environ Microbiol Rep 5:604–607. https://doi.org/10.1111/1758-2229.12058

    Article  PubMed  Google Scholar 

  34. Heylen D, Krawczyk A, Lopes de Carvalho I, Núncio MS, Sprong H, Norte AC (2017) Bridging of cryptic Borrelia cycles in European songbirds. Environ Microbiol 19:1857–1867. https://doi.org/10.1111/1462-2920.13685

    Article  PubMed  Google Scholar 

  35. Heylen D, Matthysen E, Fonville M, Sprong H (2014) Songbirds as general transmitters but selective amplifiers of Borrelia burgdorferi sensu lato genotypes in Ixodes rinicus ticks. Environ Microbiol 16:2859–2868. https://doi.org/10.1111/1462-2920.12304

    Article  PubMed  Google Scholar 

  36. Kocianová E, Rusňáková Tarageľová V, Haruštiaková D, Špitalská E (2017) Seasonal infestation of birds with immature stages of Ixodes ricinus and Ixodes arboricola. Ticks Tick-borne Dis 8:423–431. https://doi.org/10.1016/j.ttbdis.2017.01.006

    Article  PubMed  Google Scholar 

  37. Heylen DJA, Madder M, Matthysen E (2010) Lack of resistance against the tick Ixodes ricinus in two related passerine bird species. Int J Parasitol 40:183–191

    PubMed  Google Scholar 

  38. Larsson C, Bergström S (2008) A novel and simple method for laboratory diagnosis of relapsing fever Borreliosis. Open Microbiol 2:10–12. https://doi.org/10.2174/1874285800802010010

    Article  CAS  Google Scholar 

  39. Schouls LM, Van De Pol I, Rijpkema SGT, Schot CS (1999) Detection and identification of Ehrlichia, Borrelia burgdorferi Sensu Lato, and Bartonella Species in Dutch Ixodes ricinus ticks. J Clin Microbiol 37:2215–2222

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Venczel R, Knoke L, Pavlovic M, Dzaferovic E, Vaculova T, Silaghi C, Overzier E, Konrad R, Kolencik S, Derdakova M, Sing A, Schaub GA, Margos G, Fingerle V (2015) A novel duplex real-time PCR permits simultaneous detection and differentiation of Borrelia miyamotoi and Borrelia burgdorferi sensu lato. Infection 44:47–55. https://doi.org/10.1007/s15010-015-0820-8

    Article  CAS  PubMed  Google Scholar 

  41. Norte AC, Araújo PM, da Silva LP, Tenreiro PQ, Ramos JA, Núncio MS, Zé-Zé L, Lopes de Carvalho I (2015) Characterization through multilocus sequence analysis of Borrelia turdi isolates from Portugal. Microb Ecol 72:831–839. https://doi.org/10.1007/s00248-015-0660-1

    Article  PubMed  Google Scholar 

  42. Schutzer SE, Fraser-Liggett CM, Casjens SR, Qiu W-G, Dunn JJ, Mongodin EF, Luft BJ (2011) Whole-genome sequences of thirteen isolates of Borrelia burgdorferi. J Bacteriol 193:1018–1020. https://doi.org/10.1128/jb.01158-10

    Article  CAS  PubMed  Google Scholar 

  43. Schwaiger M, Peter O, Cassinotti P (2001) Routine diagnosis of Borrelia burgdorferi (sensu lato) infections using a real-time PCR assay. Clin Microbiol Infect 7:461–469

    CAS  PubMed  Google Scholar 

  44. Heylen D, Tijsse E, Fonville M, Matthysen E, Sprong H (2013) Transmission dynamics of Borrelia burgdorferi s.l. in a bird tick community. Environ Microbiol 15:663–673. https://doi.org/10.1111/1462-2920.12059

    Article  PubMed  Google Scholar 

  45. Johnson BJ, Happ CM, Mayer LW, Piesman J (1992) Detection of Borrelia burgdorferi in ticks by species-specific amplification gene. Am J Trop Med Hyg 47:730–741

    CAS  PubMed  Google Scholar 

  46. Coipan EC, Fonville M, Tijsse-Klasen E, van der Giessen JWB, Takken W, Sprong H, Takumi K (2013) Geodemographic analysis of Borrelia burgdorferi sensu lato using the 5S–23S rDNA spacer region. Infect Genet Evol 17:216–222. https://doi.org/10.1016/j.meegid.2013.04.009

    Article  CAS  PubMed  Google Scholar 

  47. Heylen D, Fonville M, van Leeuwen AD, Sprong H (2006) Co-infections and transmission dynamics in a tick-borne bacterium community exposed to songbirds. Environ Microbiol 18:988–996. https://doi.org/10.1111/1462-2920.13164

    Article  Google Scholar 

  48. Kurtenbach K, Carey D, Hoodless AN, Nuttall PA, Randolph SE (1998) Competence of pheasants as reservoirs for Lyme disease spirochetes. J Med Entomol 35:77–81

    CAS  PubMed  Google Scholar 

  49. Humair PF, Rais O, Gern L (1999) Transmission of Borrelia afzelii from Apodemus mice and Clethrionomys voles to Ixodes ricinus ticks: differential transmission pattern and overwintering maintenance. Parasitol 118 ( Pt 1:33–42

    Google Scholar 

  50. Salkeld DJ, Leonhard S, Girard YA, Hahn N, Mun J, Padgett KA, Lane RS (2008) Identifying the reservoir hosts of the Lyme disease spirochete Borrelia burgdorferi in California: The Role of the Western Gray Squirrel (Sciurus griseus). Am J Trop Med Hyg 79:535–540

    PubMed  PubMed Central  Google Scholar 

  51. Leonhard S, Jensen K, Salkeld DJ, Lane RS (2010) Distribution of the Lyme disease spirochete Borrelia burgdorferi in naturally and experimentally infected western gray squirrels (Sciurus griseus). Vector Borne Zoonotic Dis 10:441–446. https://doi.org/10.1089/vbz.2009.0127

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dsouli N, Younsi-Kabachii H, Postic D, Nouira S, Gern L, Bouattour A (2006) Reservoir role of the lizard, Psammodromus algirus, in the transmission cycle of Borrelia burgdorferi sensu lato (Spirochaetacea) in Tunisia. J Med Entomol 43:737–742

    PubMed  Google Scholar 

  53. Levin M, Levine JF, Yang S, Howard P, Apperson CS (1996) Reservoir competence of the southeastern five-lined skink (Eumeces inexpectatus) and the green anole (Anolis carolinensis) for Borrelia burgdorferi. Am J Trop Med Hyg 54:92–97

    CAS  PubMed  Google Scholar 

  54. De Sousa R, Lopes de Carvalho I, Santos AS, Bernardes C, Milhano N, Jesus J, Menezes D, Núncio MS (2012) The role of Teira dugesii lizard as potential host for Ixodes ricinus tick-borne pathogens. Appl Environ Microbiol 78:3767–3769. https://doi.org/10.1128/aem.07945-11

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kurtenbach K, Schafer SM, Sewell HS, Peacey M, Hoodless A, Nuttall PA (2002) Differential survival of Lyme borreliosis spirochetes in ticks that feed on birds. Infect Immun 70:5893–5895. https://doi.org/10.1128/iai.70.10.5893-5895.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hanincova K, Schafer SM, Etti S, Sewell HS, Taragelova V, Ziak D, Labuda M, Kurtenbach K (2003) Association of Borrelia afzelii with rodents in Europe. Parasitol 126:11–20

    CAS  Google Scholar 

  57. Welty JC, Baptista L (1988) The Life of Birds. Saunders College Publishing, New York

    Google Scholar 

  58. Kurtenbach K, Peacey M, Rijpkema SG, Hoodless AN, Nuttall PA, Randolph SE (1998) Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Appl Environ Microbiol 64:1169–1174

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Herrmann C, Gern L, Voordouw MJ (2013) Species co-occurrence patterns among Lyme Borreliosis pathogens in the tick vector Ixodes ricinus. Appl Environ Microbiol 79:7273–7280. https://doi.org/10.1128/aem.02158-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Strandh M, Råberg L (2015) Within-host competition between Borrelia afzelii ospC strains in wild hosts as revealed by massively parallel amplicon sequencing. Philos Trans R Soc Lond Ser B Biol Sci 370:20140293. https://doi.org/10.1098/rstb.2014.0293

    Article  CAS  Google Scholar 

  61. Hubálek Z, Halouzka J, Heroldová M (1998) Growth temperature ranges of Borrelia burgdorferi sensu lato strains. J Med Microbiol 47:929–932. https://doi.org/10.1099/00222615-47-10-929

    Article  PubMed  Google Scholar 

  62. Fukunaga M, Hamase A, Okada K, Inoue H, Tsuruta Y, Miyamoto K, Nakao M (1996) Characterization of spirochetes isolated from ticks (Ixodes tanuki, Ixodes turdus, and Ixodes columnae) and comparison of the sequences with those of Borrelia burgdorferi sensu lato strains. Appl Environ Microbiol 62:2338–2344

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wager B, Shaw DK, Groshong AM, Blevins JS, Skare JT (2015) BB0744 Affects tissue tropism and spatial distribution of Borrelia burgdorferi. Infect Immun 83:3693–3703. https://doi.org/10.1128/iai.00828-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lin YP, Benoit V, Yang X, Martinez-Herranz R, Pal U, Leong JM (2014) Strain-specific variation of the decorin-binding adhesin DbpA influences the tissue tropism of the lyme disease spirochete. PLoS Pathog 10:e1004238. https://doi.org/10.1371/journal.ppat.1004238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhong X, Nouri M, Raberg L (2019) Colonization and pathology of Borrelia afzelii in its natural hosts. Ticks Tick Borne Dis 10:822–827. https://doi.org/10.1016/j.ttbdis.2019.03.017

    Article  PubMed  Google Scholar 

  66. Gryczynska A, Zgódka A, Ploski R, Siemiatkowski M (2004) Borrelia burgdorferi sensu lato infection in passerine birds from the Mazurian Lake region (Northeastern Poland). Avian Pathol 33:69–75

    PubMed  Google Scholar 

  67. Schramm F, Gauthier-Clerc M, Fournier J-C, McCoy KD, Barthel C, Postic D, Handrich Y, Le Maho Y, Jaulhac B (2014) First detection of Borrelia burgdorferi sensu lato DNA in king penguins (Aptenodytes patagonicus halli). Ticks Tick-borne Dis 5:939–942. https://doi.org/10.1016/j.ttbdis.2014.07.013

    Article  PubMed  Google Scholar 

  68. Kaiser A, Seitz A, Strub O (2002) Prevalence of Borrelia burgdorferi sensu lato in the nightingale (Luscinia megarhynchos) and other passerine birds. Int J Med Microbiol 291:75–79

    PubMed  Google Scholar 

  69. Newman EA, Eisen L, Eisen RJ, Fedorova N, Hasty JM, Vaughn C, Lane RS (2015) Borrelia burgdorferi sensu lato spirochetes in wild birds in Northwestern California: associations with ecological factors, bird behavior and tick infestation. PLoS One 10:e0118146. https://doi.org/10.1371/journal.pone.0118146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Anderson JF, Magnarelli LA (1984) Avian and mammalian hosts for spirochete-infected ticks and insects in a Lyme disease focus in Connecticut. Yale J Biol Med 57:627–641

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Humair PF, Turrian N, Aeschlimann A, Gern L (1993) Ixodes ricinus immatures on birds in a focus of Lyme borreliosis. Folia Parasitol 40:237–242

    CAS  PubMed  Google Scholar 

  72. McLean RG, Ubico SR, Hughes CA, Engstrom SM, Johnson RC (1993) Isolation and characterization of Borrelia burgdorferi from blood of a bird captured in the Saint Croix River Valley. J Clin Microbiol 31:2038–2043

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gylfe Å, Olsen B, Straševičius D, Marti Ras N, Weihe P, Noppa L, Östberg Y, Baranton G, Bergström S (1999) Isolation of Lyme disease Borrelia from puffins (Fratercula arctica) and seabird ticks (Ixodes uriae) on the Faeroe Islands. J Clin Microbiol 37:890–896

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Burgess EC (1989) Experimental inoculation of mallard ducks (Anas platyrhynchos) with Borrelia burgdorferi. J Wildl Dis 25:99–102. https://doi.org/10.7589/0090-3558-25.1.99

    Article  CAS  PubMed  Google Scholar 

  75. Barbour AG, Bunikis J, Travinsky B, Hoen AG, Diuk-Wasser MA, Fish D, Tsao JI (2009) Niche partitioning of Borrelia burgdorferi and Borrelia miyamotoi in the same tick vector and mammalian reservoir species. Am J Trop Med Hyg 81:1120–1131. https://doi.org/10.4269/ajtmh.2009.09-0208

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tilly K, Rosa PA, Stewart PE (2008) Biology of infection with Borrelia burgdorferi. Infect Dis Clin N Am 22:217–234. https://doi.org/10.1016/j.idc.2007.12.013

    Article  Google Scholar 

  77. Richter D, Spielman A, Komar N, Matuschka FR (2000) Competence of American robins as reservoir hosts for Lyme disease spirochetes. Emerg Infect Dis 6:133–138

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Defosse DL, Duray PH, Johnson RC (1992) The NIH-3 immunodeficient mouse is a model for Lyme borreliosis myositis and carditis. Am J Pathol 141:3–10

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Anderson JF, Johnson RC, Magnarelli LA, Hyde FW (1985) Identification of endemic foci of Lyme disease: isolation of Borrelia burgdorferi from feral rodents and ticks (Dermacentor variabilis). J Clin Microbiol 22:36–38

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Petney TN, Hassler D, Brückner M, Maiwald M (1996) Comparison of urinary bladder and ear biopsy samples for determining prevalence of Borrelia burgdorferi in rodents in central Europe. J Clin Microbiol 34:1310–1312

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Norte AC, Alves da Silva A, Alves J, da Silva LP, Nuncio MS, Escudero R, Anda P, Ramos JA, Lopes de Carvalho I (2014) The importance of lizards and small mammals as reservoirs for Borrelia lusitaniae in Portugal. Environ Microbiol Rep 7:188–193. https://doi.org/10.1111/1758-2229.12218

    Article  Google Scholar 

  82. Taragel’ová V, Koci J, Hanincová K, Kurtenbach K, Derdaková M, Ogden NH, Literák I, Kocianová E, Labuda M (2008) Blackbirds and song thrushes constitute a key reservoir of Borrelia garinii, the causative agent of Borreliosis in Central Europe. Appl Environ Microbiol 74:1289–1293

    PubMed  Google Scholar 

  83. Heylen D, Sprong H, van Oers K, Fonville M, Leirs H, Matthysen E (2014) Are the specialized bird ticks, Ixodes arboricola and I. frontalis, competent vectors for Borrelia burgdorferi sensu lato? Environ Microbiol 16:1081–1089. https://doi.org/10.1111/1462-2920.12332

    Article  PubMed  Google Scholar 

  84. Li S, Heyman P, Cochez C, Simons L, Vanwambeke SO (2012) A multi-level analysis of the relationship between environmental factors and questing Ixodes ricinus dynamics in Belgium. Parasites Vector 5:149. https://doi.org/10.1186/1756-3305-5-149

    Article  Google Scholar 

  85. Heylen D, Lasters R, Adriaensen F, Fonville M, Sprong H, Matthysen E (2019) Ticks and tick-borne diseases in the city: role of landscape connectivity and green space characteristics in a metropolitan area. Sci Total Environ 670:941–949. https://doi.org/10.1016/j.scitotenv.2019.03.235

    Article  CAS  PubMed  Google Scholar 

  86. Hartemink N, van Vliet A, Sprong H, Jacobs F, Garcia-Marti I, Zurita-Milla R, Takken W (2019) Temporal-spatial variation in questing tick activity in the Netherlands: the effect of climatic and habitat factors. Vector Borne Zoonotic Dis 19:494–505. https://doi.org/10.1089/vbz.2018.2369

    Article  PubMed  Google Scholar 

  87. Agoulon A, Hoch T, Heylen D, Chalvet-Monfray K, Plantard O (2018) Unravelling the phenology of Ixodes frontalis, a common but understudied tick species in Europe. Ticks and Tick-borne Diseases 10:505–512. https://doi.org/10.1016/j.ttbdis.2018.12.009

    Article  PubMed  Google Scholar 

  88. Miyamoto K, Sato Y, Okada K, Fukunaga M, Sato F (1997) Competence of a migratory bird, red-bellied thrush (Turdus chrysolaus), as an avian reservoir for the Lyme disease spirochetes in Japan. Acta Trop 65:43–51

    CAS  PubMed  Google Scholar 

  89. Anderson JF, Johnson RC, Magnarelli LA, Hyde FW (1986) Involvement of birds in the epidemiology of the Lyme-disease agent Borrelia burgdorferi. Infect Immun 51:394–396

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Barthold SW (1991) Infectivity of Borrelia burgdorferi relative to route of inoculation and genotype in laboratory mice. J Infect Dis 163:419–420. https://doi.org/10.1093/infdis/163.2.419

    Article  CAS  PubMed  Google Scholar 

  91. Moody KD, Adams RL, Barthold SW (1994) Effectiveness of antimicrobial treatment against Borrelia burgdorferi infection in mice. Antimicrob Agents Chemother 38:1567–1572. https://doi.org/10.1128/aac.38.7.1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Brown RN, Lane RS (1994) Natural and experimental Borrelia burgdorferi infections in woodrats and deer mice from California. J Wildl Dis 30:389–398. https://doi.org/10.7589/0090-3558-30.3.389

    Article  CAS  PubMed  Google Scholar 

  93. Randolph SE, Gern L, Nuttall PA (1996) Co-feeding ticks: epidemiological significance for tick-borne pathogen transmission. Parasitol Today 12:472–479

    CAS  PubMed  Google Scholar 

  94. Poupon MA, Lommano E, Humair PF, Douet W, Rais O, Schaad M, Jenni L, Gern L (2006) Prevalence of Borrelia burgdorferi sensu lato in ticks collected from migratory birds in Switzerland. Appl Environ Microbiol 72:976–979

    CAS  PubMed Central  Google Scholar 

  95. Heylen DJA, Sprong H, Krawczyk A, Van Houtte N, Genné D, Gomez-Chamorro A, van Oers K, Voordouw MJ (2017) Inefficient co-feeding transmission of Borrelia afzelii in two common European songbirds. Sci Rep 7:39596. https://doi.org/10.1038/srep39596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Parola P, Raoult D (2001) Ticks and tick-borne bacterial diseases in humans: an emerging infectious threat. Clin Infect Dis 32:897–928. https://doi.org/10.1086/319347

    Article  CAS  PubMed  Google Scholar 

  97. Udall DN (2007) Recent updates on onchocerciasis: diagnosis and treatment. Clin Infect Dis 44:53–60. https://doi.org/10.1086/509325

    Article  PubMed  Google Scholar 

  98. Doehl JSP, Bright Z, Dey S, Davies H, Magson J, Brown N, Romano A, Dalton JE, Pinto AI, Pitchford JW, Kaye PM (2017) Skin parasite landscape determines host infectiousness in visceral leishmaniasis. Nat Commun 8:57. https://doi.org/10.1038/s41467-017-00103-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Joris Elst and Sophie Philtjes for technical support and Maria Salomé Gomes, Lara Augusto, Natalie Van Houtte, Aleksandra Krawczyk and Manoj Fonville for help with the laboratory analyses.

Funding

This study received financial support from Fundação para a Ciência e a Tecnologia by the strategic program of MARE (MARE - UID/MAR/04292/2019), the fellowship to Ana Cláudia Norte (SFRH/BPD/108197/2015) and from the Portuguese National Institute of Health Doutor Ricardo Jorge. Dieter Heylen is funded by the Marie Sklodowska-Curie Actions (EU-Horizon 2020, Individual Global Fellowship, project no. 799609), the Fund for Scientific Research – Flanders (FWO) and the Bill & Melinda Gates Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Cláudia Norte.

Ethics declarations

All bird captures were performed under licences of the Agency for Nature and Forests (Flemish Government, Belgium) and experimental setups were approved by the Ethics Committee for Animal Experiments of the University of Antwerp (2009-32 and 2014-49).

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norte, A.C., Lopes de Carvalho, I., Núncio, M.S. et al. Getting under the birds’ skin: tissue tropism of Borrelia burgdorferi s.l. in naturally and experimentally infected avian hosts. Microb Ecol 79, 756–769 (2020). https://doi.org/10.1007/s00248-019-01442-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-019-01442-3

Keywords

Navigation