Skip to main content
Log in

Biocontrol of Root Diseases and Growth Promotion of the Tuberous Plant Aconitum carmichaelii Induced by Actinomycetes Are Related to Shifts in the Rhizosphere Microbiota

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Soil Actinomycetes have been used as biocontrol agents against soil-borne plant diseases, yet little is known about their effects on the structure of the rhizosphere microbiota and the long-term effects on crop yield and disease intensity after the application of Actinomycetes is stopped. Here, we conducted 3-year plot experiments to investigate the roles of two Actinomycetes strains (Streptomyces pactum Act12 and Streptomyces rochei D74) in the biocontrol of soil-borne root diseases and growth promotion of monkhood (Aconitum carmichaelii). We also examined their long-term effects after soil application of a mixed Actinomycetes preparation (spore powder) was completed. High-throughput sequencing was used to analyze shifts in the rhizosphere microbiota. The antifungal activity and root colonization ability of the two Actinomycetes were also tested. Disease severity of southern blight and root rot decreased following application of the Actinomycetes preparation, whereas biomass yield of tubers increased compared with the control group. Significant effects of disease control and plant growth promotion were also observed after application was stopped. The Actinomycetes preparation induced marked increases in the abundance of beneficial microbes and decreases in the abundance of harmful microbes in rhizosphere soil. Adding cell-free culture filtrates of both strains Act12 and D74 inhibited the growth of fungal pathogens capable of causing southern blight (Sclerotium rolfsii) and root rot (Fusarium oxysporum) in A. carmichaelii. A GFP-labeled strain was used to show that D74 can colonize roots of A. carmichaelii. In conclusion, a preparation of two Actinomycetes plays a role in the biocontrol of root diseases and growth promotion of A. carmichaelii by inhibiting pathogen growth and shaping the rhizosphere microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lewis JA, Papavizas GC (1991) Biocontrol of cotton damping-off caused by Rhizoctonia solani in the field with formulations of Trichoderma spp. and Gliocladium virens. Crop Protect 10:396–402

    Google Scholar 

  2. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moenne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    CAS  Google Scholar 

  3. Bruehl GW (1987) Soilborne plant pathogens. Macmillan, NY

    Google Scholar 

  4. Parra G, Ristaino JB (2001) Resistance to mefenoxam and metalaxyl among field isolates of Phytophthora capsici causing phytophthora blight of bell pepper. Plant Dis. 85:1069–1075

    CAS  PubMed  Google Scholar 

  5. Cohen Y, Coffey MD (1986) Systemic fungicides and the control of oomycetes. Annu. Rev. Phytopathol. 24:311–338

    CAS  Google Scholar 

  6. Fu L, Penton CR, Ruan Y, Shen Z, Xue C, Li R, Shen Q (2017) Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biol. Biochem. 104:39–48

    CAS  Google Scholar 

  7. Subramanian P, Mageswari A, Kim K, Lee Y, Sa T (2015) Psychrotolerant endophytic Pseudomonas spp. OB155 and OS261 induced chilling resistance in tomato plants (Solanum lycopersicum Mill.) by activation of their antioxidant capacity. Mol Plant-Microbe In 28:1073–1081

    CAS  Google Scholar 

  8. Li S, Zhang N, Zhang Z, Luo J, Shen B, Zhang R, Shen Q (2013) Antagonist Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation. Biol Fert Soils 49:295–303

    Google Scholar 

  9. Harman GE, Howell CR, Viterbo A, Chel I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    CAS  PubMed  Google Scholar 

  10. Viaene T, Langendries S, Beirinckx S, Maes M, Goormachtig S (2016) Streptomyces as a plant's best friend? FEMS Microbiol. Ecol. 92:fw119

    Google Scholar 

  11. Duan JL, Xue QH, Shu ZM, Wang DS, He F (2015) Effects of combined application of actinomycetes Act12 bio-control agents and potassium humate on growth and microbial flora in rooting zone of Salvia miltiorrhiza Bge. Acta Ecol. Sin. 35:1807–1819

    Google Scholar 

  12. Zhang HY, Xue QH, Shen GH, Wang DS (2013) Effects of actinomycetes agent on ginseng growth and rhizosphere soil microflora. Chin. J. Appl. Ecol. 8:2287–2293

    Google Scholar 

  13. Li JG, Ren GD, Jia ZJ, Dong YH (2014) Composition and activity of rhizosphere microbial communities associated with healthy and diseased greenhouse tomatoes. Plant Soil 380:337–347

    CAS  Google Scholar 

  14. Zhou G, Tang L, Zhou X, Wang T, Kou Z, Wang Z (2015) A review on phytochemistry and pharmacological activities of the processed lateral root of Aconitum carmichaelii Debeaux. J. Ethnopharmacol. 160:173–193

    CAS  PubMed  Google Scholar 

  15. Tang L, Liang LJ, Hua-Zhi YE, Zeng YJ (2004) Study on pests plaguing Aconitum carmichaelii Debx. Res Practice Chin Med 18:29–32

    Google Scholar 

  16. Tang B, Zhao Y, Shi X, Xu H, Zhao Y, Dai C, Liu F (2018) Enhanced heat stable antifungal factor production by Lysobacter enzymogenes OH11 with cheap feedstocks: medium optimization and quantitative determination. Lett. Appl. Microbiol. 66:439–446

    CAS  PubMed  Google Scholar 

  17. Li DY, Sun Y (1981) Studies on Sclerotium rolfsii Sacc of Chinese aconite (Aconitum carmichaelii Derx). J Plant Prot 8:259–264

    Google Scholar 

  18. Duan X, Zhao F, Yan X, Xue Q, Li X, Wen B, Jia L, Yan H (2016) Construction of SPA7074-deficient mutant of biocontrol strain Streptomyces pactum Act12 and characterization of its secondary metabolites. Acta Microbiol Sin. 56:1833–1891

    Google Scholar 

  19. He F, Zhang ZL, Cui M, Xue QH, Wang DS (2015) Disease prevention and growth promotion effects of actinomycete strain D74 on Amorphophallus konjac. [J] Acta Horticulturae Sinica 42:367–376

    CAS  Google Scholar 

  20. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63:541–556

    CAS  PubMed  Google Scholar 

  21. Lagopodi AL, Ram AFJ, Lamers GEM, Punt PJ, Lugtenberg BJJ, Bloemberg GV (2002) Novel aspects of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis-lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. Mol. Plant-Microbe Interact. 15:172–179a

    CAS  PubMed  Google Scholar 

  22. Xiong W, Zhao Q, Xue C, Xun W, Zhao J, Wu H, Li R, Shen Q (2016) Comparison of fungal community in black pepper-vanilla and vanilla monoculture systems associated with Vanilla Fusarium wilt disease. Front in Microbiol 7:117

    Google Scholar 

  23. Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. Environ. Microbiol. 71:4117–4120

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    PubMed  PubMed Central  Google Scholar 

  25. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Tumbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335–336

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methe B, DeSantis TZ, Petrosino JF, Knight R, Birren BW, Human Microbiome C (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21:494–504

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10:996–998

    CAS  PubMed  Google Scholar 

  28. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41:590–596

    Google Scholar 

  29. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    CAS  PubMed  Google Scholar 

  31. Das K, Rajawat MVS, Saxena AK, Prasanna R (2017) Development of Mesorhizobium ciceri-based biofilms and analyses of their antifungal and plant growth promoting activity in chickpea challenged by Fusarium wilt. Indian J. Microbiol. 57:48–59

    CAS  PubMed  Google Scholar 

  32. Yuen GY, Broderick KC, Jochum CC, Chen CJ, Caswell-Chen EP (2018) Control of cyst nematodes by Lysobacter enzymogenes strain C3 and the role of the antibiotic HSAF in the biological control activity. Biol. Control 117:158–163

    CAS  Google Scholar 

  33. Puopolo G, Tomada S, Pertot I (2018) The impact of the omics era on the knowledge and use of Lysobacter species to control phytopathogenic micro-organisms. J. Appl. Microbiol. 124:15–27

    CAS  PubMed  Google Scholar 

  34. Han KS, Choi SK, Kim HH, Lee SC, Park JH, Cho MR, Park MJ (2014) First report of Myrothecium roridum causing leaf and stem rot disease on Peperomia quadrangularis in Korea. Mycobiology 42:203–205

    PubMed  PubMed Central  Google Scholar 

  35. Ye W, Liu T, Zhu M, Zhang W, Li H, Huang Z, Li S (2017) De novo transcriptome analysis of plant pathogenic fungus Myrothecium roridum and identification of genes associated with trichothecene mycotoxin biosynthesis. Int. J. Mol. Sci. 18:497

    PubMed Central  Google Scholar 

  36. Cho H, Song ES, Lee YK, Lee S, Lee SW, Jo A, Lee BM, Kim JG, Hwang I (2018) Analysis of genetic and pathogenic diversity of Ralstonia solanacearum causing potato bacterial wilt in Korea. Plant Pathol. J. 34:23–34

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen J, Guo TW, Tan XL, Zhu WB, Wei XL, Wang DS, Xue QH (2013) Comparison of microecological characterization in rhizosphere soil between healthy and diseased plants in continuous cropping potato fields. Acta Agron. Sin. 39:2055–2064

    CAS  Google Scholar 

  38. Thano P, Akarapisan A (2018) Phylotype and sequevar of Ralstonia solanacearum which causes bacterial wilt in Curcuma alismatifolia gagnep. Lett. Appl. Microbiol. 66:384–393. https://doi.org/10.1111/lam.12857

    Article  CAS  PubMed  Google Scholar 

  39. Degruyter J, Vankesteren HA, Noordeloos ME, Paternotte SJ, Veenbaasrijks JW (1992) The association of humicola-fuscoatra with corky root symptoms in wilted glasshouse tomatoes. Neth. J. Plant Pathol. 98:257–260

    Google Scholar 

  40. Menzies JG, Ehret DL, Koch C, Bogdanoff C (1998) Humicola fuscoatra infects tomato roots, but is not pathogenic. Eur. J. Plant Pathol. 104:769–775

    Google Scholar 

  41. Pak D, You MP, Lanoiselet V, Barbetti MJ (2017) Reservoir of cultivated rice pathogens in wild rice in Australia. Eur. J. Plant Pathol. 147:295–311

    Google Scholar 

  42. Boukaew S, Prasertsan P (2014) Suppression of rice sheath blight disease using a heat stable culture filtrate from Streptomyces philanthi RM-1-138. Crop Protect 61:1–10

    Google Scholar 

  43. Lehr NA, Schrey SD, Hampp R, Tarkka MT (2008) Root inoculation with a forest soil streptomycete leads to locally and systemically increased resistance against phytopathogens in Norway spruce. New Phytol. 177:965–976

    PubMed  Google Scholar 

  44. Manhas RK, Kaur T (2016) Biocontrol potential of Streptomyces hydrogenans strain DH16 toward Alternaria brassicicola to control damping off and black leaf spot of Raphanus sativus. Front. Plant Sci. 7:1869

    PubMed  PubMed Central  Google Scholar 

  45. El-Tarabily KA, Sivasithamparam K (2006) Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol. Biochem. 38:1505–1520

    CAS  Google Scholar 

  46. Rey T, Dumas B (2017) Plenty is no plague: Streptomyces symbiosis with crops. Trends Plant Sci. 22:30–37

    CAS  PubMed  Google Scholar 

  47. Sathya A, Vijayabharathi R, Gopalakrishnan S (2017) Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech 7:102

    PubMed  PubMed Central  Google Scholar 

  48. Ma JN, Liu YT, Li YL, Sun YY, Yang BM, Lai HX, Xue QH (2017) Effects and mechanism of two Streptomyces strains on promoting plant growth and increasing grain yield of maize. Chin. J. Appl. Ecol. 28:315–326

    Google Scholar 

  49. Yu ZY, Yu MM, Luo JY, Su C, Xue QH, Huang SX, Sun Y, Ma YT (2015) Isolation, identification and antimicrobial activity of secondary metabolites from a soil-derived Streptomyces from arid habitats of Qinghai. Nat Prod Res Dev 27:1900–1904

    CAS  Google Scholar 

  50. Li YL, He F, Lai HX, Xue QH (2017) Mechanism of in vitro antagonism of phytopathogenic Sclerotium rolfsii by actinomycetes. Eur. J. Plant Pathol. 149:299–311

    CAS  Google Scholar 

  51. Xie J, Shu P, Strobel G, Chen J, Wei J, Xiang Z, Zhou Z (2017) Pantoea agglomerans SWg2 colonizes mulberry tissues, promotes disease protection and seedling growth. Biol. Control 113:9–17

    CAS  Google Scholar 

  52. Coombs JT, Franco CM (2003) Visualization of an endophytic Streptomyces species in wheat seed. Appl. Environ. Microbiol. 69:4260–4262

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Timmusk S, Grantcharova N, Wagner EGH (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl. Environ. Microbiol. 71:7292–7300

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Millet YA, Danna CH, Clay NK, Songnuan W, Simon MD, Werck-Reichhart D, Ausubel FM (2010) Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 22:973–990

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Youth Fund of the National Natural Science Foundation of China (31600407), the Fundamental Research Funds for the Central Universities of China (Z109021616), and the National Key Technology R&D Program of China (2012BAD14B11). We thank Dr. Chaofeng Lin (TEC, Qingdao, China) for improving the English.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quanhong Xue or Hangxian Lai.

Electronic Supplementary Material

ESM 1

(DOCX 615 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Guo, Q., He, F. et al. Biocontrol of Root Diseases and Growth Promotion of the Tuberous Plant Aconitum carmichaelii Induced by Actinomycetes Are Related to Shifts in the Rhizosphere Microbiota. Microb Ecol 79, 134–147 (2020). https://doi.org/10.1007/s00248-019-01388-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-019-01388-6

Keywords

Navigation