Skip to main content
Log in

Detection and Characterization of Streptomycin Resistance (strA-strB) in a Honeybee Gut Symbiont (Snodgrassella alvi) and the Associated Risk of Antibiotic Resistance Transfer

  • Note
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Use of antibiotics in medicine and farming contributes to increasing numbers of antibiotic-resistant bacteria in diverse environments. The ability of antibiotic resistance genes (ARG) to transfer between bacteria genera contributes to this spread. It is difficult to directly link antibiotic exposure to the spread of ARG in a natural environment where environmental settings and study populations cannot be fully controlled. We used managed honeybees in environments with contrasting streptomycin exposure (USA: high exposure, Norway: low exposure) and mapped the prevalence and spread of transferrable streptomycin resistance genes. We found a high prevalence of strA-strB genes in the USA compared to Norway with 17/90 and 1/90 positive samples, respectively (p < 0.00007). We identified strA-strB genes on a transferrable transposon Tn5393 in the honeybee gut symbiont Snodgrassella alvi. Such transfer of resistance genes increases the risk of the spread to new environments as honeybees are moved to new pollination sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data Availability

The assembled genome is deposited at NCBI with accession number NXEN00000000.

The Tn5393 sequence is deposited at NCBI with the accession number MG704836.

The metagenome data are available on request.

References

  1. Djordjevic SP, Stokes HW, Roy Chowdhury P (2013) Mobile elements, zoonotic pathogens and commensal bacteria: conduits for the delivery of resistance genes into humans, production animals and soil microbiota. Front Microbiol 4:86. https://doi.org/10.3389/fmicb.2013.00086

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zurek L, Ghosh A (2014) Insects represent a link between food animal farms and the urban environment for antibiotic resistance traits. Appl Environ Microbiol 80(12):3562–3567. https://doi.org/10.1128/AEM.00600-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Forslund K, Sunagawa S, Kultima JR, Mende DR, Arumugam M, Typas A, Bork P (2013) Country-specific antibiotic use practices impact the human gut resistome. Genome Res 23(7):1163–1169. https://doi.org/10.1101/gr.155465.113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. McManus PS, Stockwell VO, Sundin GW, Jones AL (2002) Antibiotic use in plant agriculture. Annu Rev Phytopathol 40:443–465. https://doi.org/10.1146/annurev.phyto.40.120301.093927

    Article  PubMed  CAS  Google Scholar 

  5. Andersson DI, Hughes D (2014) Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol 12(7):465–478. https://doi.org/10.1038/nrmicro3270

    Article  PubMed  CAS  Google Scholar 

  6. Ludvigsen J, Porcellato D, L’Abée-Lund TM, Amdam GV, Rudi K (2017) Geographically widespread honeybee-gut symbiont subgroups show locally distinct antibiotic-resistant patterns. Mol Ecol 26(23):6590–6607. https://doi.org/10.1111/mec.14392

    Article  PubMed  CAS  Google Scholar 

  7. Martinson VG, Moy J, Moran NA (2012) Establishment of characteristic gut bacteria during development of the honeybee worker. Appl Environ Microbiol 78(8):2830–2840. https://doi.org/10.1128/AEM.07810-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Powell JE, Martinson VG, Urban-Mead K, Moran NA (2014) Routes of acquisition of the gut microbiota of Apis mellifera. Appl Environ Microbiol. https://doi.org/10.1128/aem.01861-14

  9. Hu Y, Yang X, Qin J, Lu N, Cheng G, Wu N, Pan Y, Li J, Zhu L, Wang X, Meng Z, Zhao F, Liu D, Ma J, Qin N, Xiang C, Xiao Y, Li L, Yang H, Wang J, Yang R, Gao GF, Wang J, Zhu B (2013) Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat Commun 4:2151. https://doi.org/10.1038/ncomms3151

    Article  PubMed  CAS  Google Scholar 

  10. Sunde M, Norstrom M (2005) The genetic background for streptomycin resistance in Escherichia coli influences the distribution of MICs. J Antimicrob Chemother 56(1):87–90. https://doi.org/10.1093/jac/dki150

    Article  PubMed  CAS  Google Scholar 

  11. Sundin GW, Bender CL (1996) Dissemination of the strA-strB streptomycin-resistance genes among commensal and pathogenic bacteria from humans, animals, and plants. Mol Ecol 5(1):133–143

    Article  PubMed  CAS  Google Scholar 

  12. Chiou CS, Jones AL (1993) Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. J Bacteriol 175(3):732–740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. L'Abée-Lund TM, Sørum H (2000) Functional Tn5393-like transposon in the R plasmid pRAS2 from the fish pathogen Aeromonas salmonicida subspecies salmonicida isolated in Norway. Appl Environ Microbiol 66(12):5533–5535

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67(11):2640–2644. https://doi.org/10.1093/jac/dks261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sundin GW (2000) Examination of base pair variants of the strA-strB streptomycin resistance genes from bacterial pathogens of humans, animals and plants. J Antimicrob Chemother 46(5):848–849

    Article  PubMed  CAS  Google Scholar 

  16. Sundin GW, Bender CL (1995) Expression of the strA-strB streptomycin resistance genes in Pseudomonas syringae and Xanthomonas campestris and characterization of IS6100 in X. campestris. Appl Environ Microbiol 61(8):2891–2897

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Alexandrova M, Porrini C, Bazzi C, Carpana E, Bigliardi M, Sabatini AG (2002) Erwinia amylovora longevity in beehives, beehive products and honeybees. Acta Hortic 590:201–205

    Article  Google Scholar 

  18. McArt SH, Koch H, Irwin RE, Adler LS (2014) Arranging the bouquet of disease: floral traits and the transmission of plant and animal pathogens. Ecol Lett 17(5):624–636. https://doi.org/10.1111/ele.12257

    Article  PubMed  Google Scholar 

  19. Huddleston JR (2014) Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist 7:167–176. https://doi.org/10.2147/IDR.S48820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Forster H, McGhee GC, Sundin GW, Adaskaveg JE (2015) Characterization of streptomycin resistance in isolates of Erwinia amylovora in California. Phytopathology 105(10):1302–1310. https://doi.org/10.1094/PHYTO-03-15-0078-R

    Article  PubMed  CAS  Google Scholar 

  21. Pezzella C, Ricci A, DiGiannatale E, Luzzi I, Carattoli A (2004) Tetracycline and streptomycin resistance genes, transposons, and plasmids in Salmonella enterica isolates from animals in Italy. Antimicrob Agents Chemother 48(3):903–908. https://doi.org/10.1128/aac.48.3.903-908.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Davide Porcellato for performing the genome sequencing of the S. alvi_E1 strain and Inga Leena Angell for performing the metagenome sequencing of the Norwegian sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane Ludvigsen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 29 kb)

ESM 2

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludvigsen, J., Amdam, G.V., Rudi, K. et al. Detection and Characterization of Streptomycin Resistance (strA-strB) in a Honeybee Gut Symbiont (Snodgrassella alvi) and the Associated Risk of Antibiotic Resistance Transfer. Microb Ecol 76, 588–591 (2018). https://doi.org/10.1007/s00248-018-1171-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-018-1171-7

Keywords

Navigation