Skip to main content
Log in

Characterization of the Gut Microbiota in Six Geographical Populations of Chinese Rhesus Macaques (Macaca mulatta), Implying an Adaptation to High-Altitude Environment

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Knowledge about the impact of different geographical environments on rhesus macaque gut microbiota is limited. In this study, we compared the characteristics of gut microbiota in six different Chinese rhesus macaque populations, including Hainan, Nanning, Guizhou, Xichang, Jianchuan and Tibet. Through the composition analysis of operational taxonomic units (OTUs), we found that there were significant differences in the abundance of core overlapping OTUs in the six Chinese groups. Specifically, the Tibet population exhibited the highest gut microbial diversity and the most unique OTUs. Statistically significant differences in the composition of gut microbiota among the six groups at phylum and family level were evident. Specifically, Tibet had higher abundances of Firmicutes and lower abundances of Bacteroidetes than the other geographical groups, and the higher abundance of Firmicutes in the Tibetan group was mainly caused by a significant increase in the family Ruminococcaceae and Christensenellaceae. Phylogenetic investigation of communities by reconstruction of unobserved state analysis showed that the enrichment ratio for environmental information processing and organismal systems was the highest in the Tibet population. Additionally, our results suggested that in the adaptation process of rhesus macaques to different geographical environments, the abundance of the core common flora of the intestinal microbes had undergone varying degree of change and produced new and unique flora, both of which helped to reshape the gut microbiota of rhesus macaques. In particular, this change was more obvious for animals in the high-altitude environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

NHPs:

Non-human primates

OTU:

Operational taxonomic units

ACE:

Abundance-based coverage estimator

Chao 1:

The Chao 1 estimator

LEfSe:

Linear discriminant analysis (LDA) effect size

PICRUSt:

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States

KEGG:

Kyoto Encyclopedia of Genes and Genomes

ABC transporters:

ATP-binding cassette transporters

NSTI:

Nearest sequenced taxon index

BMI:

Body mass index

References

  1. Zhang Z, Xu D, Wang L, Hao J, Wang J, Zhou X, Wang W, Qiu Q, Huang X, Zhou J (2016) Convergent evolution of rumen microbiomes in high-altitude mammals. Curr. Biol. 26(14):1873

    Article  PubMed  CAS  Google Scholar 

  2. Hanya G, Ménard N, Qarro M, Tattou I, Mohamed FM, Vallet D, Yamada A, Go M, Hino T, Tsujino R, Agetsuma N, Wada K (2011) Dietary adaptations of temperate primates: comparisons of Japanese and Barbary macaques. Primates 52(2):187–198

    Article  PubMed  Google Scholar 

  3. Milton K, May ML (1976) Body weight, diet and home range area in primates. Nature 259(5543):459–462

    Article  PubMed  CAS  Google Scholar 

  4. Cachel S (1989) Primate adaptation and evolution. Int J Primatol 10(5):487–490

    Article  Google Scholar 

  5. Hanya G, Chapman CA (2013) Linking feeding ecology and population abundance: a review of food resource limitation on primates. Ecol Res 28(2):183–190

    Article  Google Scholar 

  6. Yamada A, Muroyama Y (2010) Effects of vegetation type on habitat use by crop-raiding Japanese macaques during a food-scarce season. Primates 51(2):159–166

    Article  PubMed  Google Scholar 

  7. Fei H, Ma C, Bartlett TQ, Dai R, Xiao W, Fan P (2015) Feeding postures of Cao Vit gibbons (Nomascus nasutus) living in a low-canopy karst forest. Int J Primatol 36(5):1036–1054

    Article  Google Scholar 

  8. Blaut M, Collins MD, Welling GW, Doré J, Van LJ, De VW (2002) Molecular biological methods for studying the gut microbiota: the EU human gut flora project. Br J Nutr 87(Suppl 2 (S2)):S203

    Article  PubMed  CAS  Google Scholar 

  9. Kwok L, Zhang J, Guo Z, Gesudu Q, Zheng Y, Qiao J, Huo D, Zhang H (2014) Characterization of fecal microbiota across seven Chinese ethnic groups by quantitative polymerase chain reaction. PLoS One 9(4):e93631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Slack E, Hapfelmeier S, Stecher B, Velykoredko Y, Stoel M, Lawson MA, Geuking MB, Beutler B, Tedder TF, Hardt WD (2009) Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 325(5940):617–620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Atarashi K, Honda K (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331(6015):337

    Article  PubMed  CAS  Google Scholar 

  12. Hapfelmeier S, Lawson MA, Slack E, Kirundi JK, Stoel M, Heikenwalder M, Cahenzli J, Velykoredko Y, Balmer ML, Endt K (2010) Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328(5986):1705–1709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, Buhler JD, Gordon JI (2005) Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307(5717):1955–1959

    Article  PubMed  CAS  Google Scholar 

  14. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood. Proc Natl Acad Sci U S A 106(10):3698–3703

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124(4):837

    Article  PubMed  CAS  Google Scholar 

  16. Li L, Zhao X (2015) Comparative analyses of fecal microbiota in Tibetan and Chinese Han living at low or high altitude by barcoded 454 pyrosequencing. Sci Rep 5(14682)

  17. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Filippo CD, Cavalieri D, Paola MD, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 107(33):14691–14696

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lin A, Bik EM, Costello EK, Dethlefsen L, Haque R, Relman DA, Singh U (2012) Distinct distal gut microbiome diversity and composition in healthy children from Bangladesh and the United States. PLoS One 8(1):e53838

    Article  CAS  Google Scholar 

  20. Zhou X, Jiang X, Yang C, Ma B, Lei C, Xu C, Zhang A, Yang X, Xiong Q, Zhang P (2016) Cecal microbiota of Tibetan chickens from five geographic regions were determined by 16SrRNAsequencing. Microbiology 5(5):753

    CAS  Google Scholar 

  21. Sun B, Xi W, Bernstein S, Huffman MA, Xia DP, Gu Z, Rui C, Sheeran LK, Wagner RS, Li J (2016) Marked variation between winter and spring gut microbiota in free-ranging Tibetan Macaques (Macaca thibetana). Sci Rep 6(26035):26035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Shea BT, Rodman PS, Cant JGH (1985) Adaptations for foraging in nonhuman primates. Bioscience 35(2):110–111

    Article  Google Scholar 

  23. Ungar PS (1995) Fruit preferences of four sympatric primate species at Ketambe, northern Sumatra, Indonesia. Int J Primatol 16(2):221–245

    Article  Google Scholar 

  24. Katherine R Amato CJY, Kent A, Righini N, Carbonero F, Estrada A, Rex Gaskins H, Stumpf RM, Yildirim S, Torralba M, Gillis M, Wilson BA, Nelson KE, White BA, Leigh SR (2013) Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 7(7):1344–1353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bo X, Xu W, Li J, Dai L, Xiong C, Tang X, Yang Y, Mu Y, Zhou J, Ding J (2015) Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation. BMC Genomics 16(1):174

    Article  CAS  Google Scholar 

  26. Duckworth JW, Timmins RJ, Wozencraft C, Choudhury A, Roberton S, Lau MWN (2017). The IUCN red list of threatened species :3, Downloaded on 11 December 2017

  27. Jiang X (1991) Taxonomic revision and distribution of subspecies of rhesus monkey (Macaca mulatta) in China. Zool. Res. 12(03):241–247

    Google Scholar 

  28. Kong F, Hua Y, Bo Z, Ning R, Ying L, Zhao J (2016) Gut microbiota signatures of longevity. Curr. Biol. 26(18):R832

    Article  PubMed  CAS  Google Scholar 

  29. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kozich JJ, Westcott SL, Baxter NT, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79(17):5112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Langille MGI, Zaneveld J, Caporaso JG, Donald DM, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31(9):814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Jiang X (1992) Cluster analysis and evolutionary relationships of Chinese macaques. Acta Anthropologica Sinica 2:184–191

    Google Scholar 

  33. Carly S, Nekaris KAI, Luke L (2012) Hiding from the moonlight: luminosity and temperature affect activity of Asian nocturnal primates in a highly seasonal forest. PLoS One 7(4):e36396.36391–e36396.36398

    Google Scholar 

  34. Campera M, Serra V, Balestri M, Barresi M, Ravaolahy M, Randriatafika F, Donati G (2014) Effects of habitat quality and seasonality on ranging patterns of collared brown lemur (Eulemur collaris) in littoral forest fragments. In J Primatol 35(5):957–975

    Google Scholar 

  35. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R (2008) Evolution of mammals and their gut microbes. Science 320(5883):1647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Chevalier C, Colin DJ, Suarezzamorano N, Tarallo V, Veyratdurebex C, Fabbiano S, Hagemann S, Montet X, Seimbille Y, Zamboni N (2015) Gut microbiota orchestrates energy homeostasis during cold. Cell 163(6):1360–1374

    Article  PubMed  CAS  Google Scholar 

  37. Barelli C, Albanese D, Donati C, Pindo M, Dallago C, Rovero F, Cavalieri D, Tuohy KM, Hauffe HC, Filippo CD (2015) Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation. Sci Rep. 5(16842)

  38. Li K, Dan Z, Gesang L, Wang H, Zhou Y, Du Y, Ren Y, Shi Y, Nie Y (2016) Comparative analysis of gut microbiota of native Tibetan and Han populations living at different altitudes. PLoS One 11(5):e0155863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P, Flint HJ (2008) Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. 32(11):1720

    Article  CAS  Google Scholar 

  40. Fogel AT (2015) The gut microbiome of wild lemurs: a comparison of sympatric Lemur catta and Propithecus verreauxi. Folia Primatologica; Int J Primatol 86(1–2):85

    Article  Google Scholar 

  41. Kong F, Zhao J, Han S, Zeng B, Yang J, Si X, Yang B, Yang M, Xu H, Li Y (2014) Characterization of the gut microbiota in the red panda (Ailurus fulgens). PLoS One 9(2):e87885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Murphy EF, Cotter PD, Healy S, Marques TM, O'Sullivan O, Fouhy F, Clarke SF, O'Toole PW, Quigley EM, Stanton C, Ross PR, O'Doherty RM, Shanahan F (2010) Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut 59(12):1635

    Article  PubMed  CAS  Google Scholar 

  43. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023

    Article  PubMed  CAS  Google Scholar 

  44. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031

    Article  PubMed  Google Scholar 

  45. Kaakoush NO (2015) Insights into the role of Erysipelotrichaceaein the human host. Front Cell Inf Microbiol 5

  46. Fernando SC, Purvis HT, Najar FZ, Sukharnikov LO, Krehbie CR, Nagaraja TG, Roe BA, DeSilva U (2010) Rumen microbial population dynamics during adaptation to a high-grain diet. Appl Environ Microbiol. 76(22):7482–7490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Jami E, White BA, Mizrahi I (2014) Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS One 9(1):e85423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Waite DW, Taylor MW (2014) Characterizing the avian gut microbiota: membership, driving influences, and potential function. Front. Microbiol. 5(4):223

    PubMed  PubMed Central  Google Scholar 

  49. Nuriel-Ohayon M, Neuman H, Koren O (2016) Microbial changes during pregnancy, birth, and infancy. Front Microbiol 7(104)

  50. Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, Corthier G, Furet JP (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 9(1):123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Henderson G, Cox F, Ganesh S, Jonker A, Young W, Collaborators GRC, Janssen PH (2016) Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep. 6:14567

    Article  CAS  Google Scholar 

  52. Carmody RN, Gerber GK, Jr LJ, Gatti DM, Somes L, Svenson KL, Turnbaugh PJ (2015) Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17(1):72

    Article  PubMed  CAS  Google Scholar 

  53. Jindou S, Borovok I, Rincon MT, Flint HJ, Antonopoulos DA, Berg ME, White BA, Bayer EA, Lamed R (2006) Conservation and divergence in cellulosome architecture between two strains of Ruminococcus flavefaciens. J Bacteriol. 188(22):7971–7976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Ze X, Duncan SH, Louis P, Flint HJ (2012) Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 6(8):1535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Sun W, Sun X, Cupples AM (2014) Identification of Desulfosporosinus as toluene-assimilating microorganisms from a methanogenic consortium. Int Biodeterior Biodegrad 88(1):13–19

    Article  CAS  Google Scholar 

  56. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Treuren WV, Knight R, Bell JT, Spector TD, Clark AG, Ley RE (2014) Human genetics shape the gut microbiome. Cell 159(4):789–799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Oki K, Toyama M, Banno T, Chonan O, Benno Y, Watanabe K (2016) Comprehensive analysis of the fecal microbiota of healthy Japanese adults reveals a new bacterial lineage associated with a phenotype characterized by a high frequency of bowel movements and a lean body type. BMC Microbiol. 16(1):284

    Article  PubMed  PubMed Central  Google Scholar 

  58. Million M, Diallo A, Raoult D (2016) Gut microbiota and malnutrition. Microb Pathog. 106:127–138

    Article  PubMed  Google Scholar 

  59. Wen GF, Gui CH, Xiao ML (2014) Microbial ecology and diversity: impact of diet in shaping gut microbiota revealed by a comparative study in infants during the first six months of life. Appl Microbiol Biotechnol 24:133–143

    Article  CAS  Google Scholar 

  60. Matthies A, Loh G, Blaut M, Braune A (2012) Daidzein and genistein are converted to equol and 5-hydroxy-equol by human intestinal Slackia isoflavoniconvertens in gnotobiotic rats. J Nutr. 142(1):40–46

    Article  PubMed  CAS  Google Scholar 

  61. Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor AA (2011) Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 140(3):976–986

    Article  PubMed  CAS  Google Scholar 

  62. Khor WC, Roume H, Coma M, Han V, Rabaey K (2016) Acetate accumulation enhances mixed culture fermentation of biomass to lactic acid. Appl Microbiol Biotechnol 100(19):8337–8348

    Article  PubMed  CAS  Google Scholar 

  63. Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, Hooper LV, Gordon JI (2003) A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299(5615):2074–2076

    Article  PubMed  CAS  Google Scholar 

  64. Hamaker BR, Tuncil YE (2014) A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J. Mol. Biol. 426(23):3838–3850

    Article  PubMed  CAS  Google Scholar 

  65. Goldsmith JR, Sartor RB (2014) The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications. J. Gastroenterol. 49(5):785–798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 42:199–205

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported in part by grants from the National Natural Science Foundation of China (No. 31370407), The experiment was supported by TinyGene Bio-Tech (shanghai) Co. Ltd.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: J.S., Y.F., and H.L. Performed the experiments: J.S., Y.F., D.Y., H.M., J.Y., M., Q.Y., and A.X. Contributed reagents/materials/analysis tools: J.S., Y.F., H.L., G.N., and M.W. All authors reviewed the manuscript. J.S. and Y.F. have the same contribution.

Corresponding author

Correspondence to Huailiang Xu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(PDF 1781 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Yao, Y., Li, D. et al. Characterization of the Gut Microbiota in Six Geographical Populations of Chinese Rhesus Macaques (Macaca mulatta), Implying an Adaptation to High-Altitude Environment. Microb Ecol 76, 565–577 (2018). https://doi.org/10.1007/s00248-018-1146-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-018-1146-8

Keywords

Navigation