Skip to main content

Advertisement

Log in

Role of Fungi in the Formation of Patinas on Feilaifeng Limestone, China

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Feilaifeng is a cultural heritage site that contains unique Buddhist statues which date back to the Five Dynasties period (907 AD–960 AD). The site was inscribed on world heritage list by UNESCO in 2011. Various patinas, which may be caused by fungi, have covered the surface of the limestone and have severely diminished the esthetic value of the statues and altered the limestone structure. Culture-dependent method was used to isolate and identify the fungi. After incubation on modified B4 medium, the calcifying fungi were identified by optical microscopy and scanning electron microscopy combined with X-ray energy-dispersive analysis. Aspergillus, Penicillium, and Colletotrichum were observed as the biomineralizing fungi. X-ray diffraction showed that the patina consisted of calcite (CaCO3), but the crystals synthesized by the identified fungi were whewellite (CaC2O4·H2O) for Aspergillus and Penicillium, and vaterite (CaCO3) for Colletotrichum. In addition, the metabolites of Colletotrichum suppressed the transformation of vaterite to calcite, but Mg2+ could inhibit the function of the metabolites. The different crystal form between the patina and the products of fungi may suggest two different pathways of patina formation and provide important reference data for studies of the mechanisms of biomineralization, cleaning of the patina, and protection of the Feilaifeng statues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ljaljeviã Grbiã MV, Vukojeviã JB (2009) Role of fungi in biodeterioration process of stone in historic buildings. Zb. Matitse. Srp. Prir. Nauke. 116:245–251

    Article  Google Scholar 

  2. Gupta SP, Sharma K (2012) The role of fungi in biodeterioration of sandstone with reference to Mahadev temple, Bastar, Chhatisgarh. Recent Res Sci Technol 4(3):18–21

    CAS  Google Scholar 

  3. Scheerer S, Ortega-Morales O, Gaylarde C (2009) Microbial deterioration of stone monuments—an updated overview. Adv. Appl. Microbiol. 66:97–139

    Article  PubMed  CAS  Google Scholar 

  4. Cacchio P, Ercole C, Cappuccio G, Lepidi A (2003) Calcium carbonate precipitation by bacterial strains isolated from a limestone cave and from a loamy soil. Geomicrobiol J. 20:85–98

    Article  CAS  Google Scholar 

  5. Fomina M (2010) Rock-building fungi. Geomicrobiol J. 27:624–629

    Article  Google Scholar 

  6. Dhami NK, Reddy MS, Mukherjee A (2014) Application of calcifying bacteria for remediation of stones and cultural heritages. Front. Microbiol. 5:304

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lópezmoreno A, Sepúlvedasánchez JD, Borgne SL (2014) Calcium carbonate precipitation by heterotrophic bacteria isolated from biofilms formed on deteriorated ignimbrite stones: influence of calcium on EPS production and biofilm formation by these isolates. Biofouling 30:547–560

    Article  CAS  Google Scholar 

  8. Rautaray D, Absar Ahmad A, Sastry M (2003) Biosynthesis of CaCO3 crystals of complex morphology using a fungus and an actinomycete. J. Am. Chem. Soc. 125:14656–14657

    Article  PubMed  CAS  Google Scholar 

  9. De LRJP, Warke PA, Smith BJ (2013) Lichen-induced biomodification of calcareous surfaces: bioprotection versus biodeterioration. Prog. Phys. Geogr. 37:325–351

    Article  Google Scholar 

  10. Salvadori O, Municchia AC (2016) The role of fungi and lichens in the biodeterioration of stone monuments. Open Conf. Proc. J. 7:39–54

    Article  CAS  Google Scholar 

  11. Castanier S, Métayer-Levrel GL, Perthuisot JP (1999) Ca-carbonates precipitation and limestone genesis—the microbiogeologist point of view. Sediment. Geol. 126:9–23

    Article  CAS  Google Scholar 

  12. Gharieb MM, Gadd GM (1999) Influence of nitrogen source on the solubilization of natural gypsum (CaSO4.2H2O) and the formation of calcium oxalate by different oxalic and citric acid-producing fungi. Mycol. Res. 103:473–481

    Article  CAS  Google Scholar 

  13. Verrecchia EP, Braissant O, Cailleau G (2006) The oxalate-carbonate pathway in soil carbon storage: the role of fungi and oxalotrophic bacteria. In: Gadd GM (ed) Fungi in Biogeochemical Cycles. Cambridge University Press, Cambridge, p 289–310

  14. Martin G, Guggiari M, Bravo D, Zopfi J, Cailleau G, Aragno M, Job D, Verrecchia E, Junier P (2012) Fungi, bacteria and soil pH: the oxalate-carbonate pathway as a model for metabolic interaction. Environ. Microbiol. 14:2960–2970

    Article  PubMed  CAS  Google Scholar 

  15. Burford EP, Fomina M, Gadd GM (2003) Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral. Mag. 67:1127–1155

    Article  CAS  Google Scholar 

  16. Li Q, Csetenyi L, Paton GI, Gadd GM (2015) CaCO3 and SrCO3 bioprecipitation by fungi isolated from calcareous soil. Environ. Microbiol. 17:3082–3097

    Article  PubMed  CAS  Google Scholar 

  17. Wang Y, Zhao F, Hu Y, Hu R (2006) Influence of chemical additives on the crystal polymorphs and shapes of precipitated calcium carbonate. Inorg. Chem. Industry 38:5–8

    Google Scholar 

  18. Li Q, Zhang B, He Z, Yang X (2016) Distribution and diversity of bacteria and fungi colonization in stone monuments analyzed by high-throughput sequencing. PLoS One 11:e163287

    Google Scholar 

  19. Li Q, Zhang B, Wang L, Ge Q (2017) Distribution and diversity of bacteria and fungi colonizing ancient Buddhist statues analyzed by high-throughput sequencing. Int. Biodeter. Biodegr. 117:245–254

    Article  CAS  Google Scholar 

  20. Dhami NK, Reddy MS, Mukherjee A (2013) Biomineralization of calcium carbonates and their engineered applications: a review. Front. Microbiol. 4:314

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shirakawa MA, Cincotto MA, Atencio D, Gaylarde CC, John VM (2011) Effect of culture medium on biocalcification by Pseudomonas putida, Lysinibacillus Sphaericus and Bacillus subtilis. Braz. J. Microbiol. 42:499–507

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhao D (2007) Effect of experimental parameters on shape and particle size of nano-CaCO3. Non-Metallic Mines 30:5–7

    Google Scholar 

  23. Sterflinger K (2000) Fungi as geologic agents. Geomicrobiol J. 17:97–124

    Article  CAS  Google Scholar 

  24. Cunningham JE, Kuiack C (1992) Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Appl. Environ. Microbiol. 58:1451

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Sayer JA, Gadd GM (1997) Solubilization and transformation of insoluble inorganic metal compounds to insoluble metal oxalates by Aspergillus niger. Mycol. Res. 101:653–661

    Article  CAS  Google Scholar 

  26. Sayer JA, Kierans M, Gadd GM (1997) Solubilization of some naturally occurring metal-bearing minerals, limescale and lead phosphate by Aspergillus niger. FEMS Microbiol. Lett. 154:29–35

    Article  PubMed  CAS  Google Scholar 

  27. Gharieb MM, Sayer JA, Gadd GM (1998) Solubilization of natural gypsum (CaDO4.2H2O) and the formation of calcium oxalate by Aspergillus niger and Serpula himantioides. Mycol. Res. 102:825–830

    Article  CAS  Google Scholar 

  28. Braissant O, Verrecchia EP, Aragno M (2002) Is the contribution of bacteria to terrestrial carbon budget greatly underestimated? Naturwissenschaften 89:366

    Article  PubMed  CAS  Google Scholar 

  29. Sahin N (2003) Oxalotrophic bacteria. Res. Microbiol. 154:399–407

    Article  PubMed  CAS  Google Scholar 

  30. Sawada K (1997) The mechanisms of crystallization and transformation of calcium carbonates. Pure Appl. Chem. 69:921–928

    Article  CAS  Google Scholar 

  31. Hadiko G, Han YS, Fuji M, Takahashi M (2006) Effect of magnesium ion on the precipitation of hollow calcium carbonate by bubble templating method. Key Eng. Mater. 317-318:65–68

    Article  CAS  Google Scholar 

  32. Chen T, Neville A, Yuan M (2006) Influence of Mg2+ on CaCO3 formation-bulk precipitation and surface deposition. Chem. Eng. Sci. 61:5318–5327

    Article  CAS  Google Scholar 

  33. Zhang KX, Fu XY, Chen JQ, Li SY (2016) Geological research on protection of stone cultural relics: Feilaifeng Cliffside Sculptures. Bull. Sci. Technol. 32:224–227

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (21643018) and the science and technology project funding for the protection of cultural relics by the Cultural Relics Bureau of Zhejiang province (2015013). Special fund for teaching and research development of liberal arts teachers in Zhejiang University (Hu Yulan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingjian Zhang.

Electronic supplementary material

ESM 1

(DOCX 3643 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Hu, Y., Zhang, B. et al. Role of Fungi in the Formation of Patinas on Feilaifeng Limestone, China. Microb Ecol 76, 352–361 (2018). https://doi.org/10.1007/s00248-017-1132-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-1132-6

Keywords

Navigation