Skip to main content
Log in

Contrasting Network Features between Free-Living and Particle-Attached Bacterial Communities in Taihu Lake

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Free-living (FL) and particle-attached (PA) bacterial communities play critical roles in nutrient cycles, metabolite production, and as a food source in aquatic systems, and while their community composition, diversity, and functions have been well studied, we know little about their community interactions, co-occurrence patterns, and niche occupancy. In the present study, 13 sites in Taihu Lake were selected to study the differences of co-occurrence patterns and niches occupied between the FL and PA bacterial communities using correlation-based network analysis. The results show that both FL and PA bacterial community networks were non-random and significant differences of the network indexes (average path length, clustering coefficient, modularity) were found between the two groups. Furthermore, the PA bacterial community network consisted of more correlations between fewer OTUs, as well as higher average degree, making it more complex. The results of observed (O) to random (R) ratios of intra- or inter-phyla connections indicate more relationships such as cross-feeding, syntrophic, mutualistic, or competitive relationships in the PA bacterial community network. We also found that four OTUs (OTU00074, OTU00755, OTU00079, and OTU00454), which all had important influences on the nutrients cyclings, played different roles in the two networks as connectors or module hubs. Analysis of the relationships between the module eigengenes and environmental variables demonstrated that bacterial groups of the two networks favored quite different environmental conditions. These findings further confirmed the different ecological functions and niches occupied by the FL and PA bacterial communities in the aquatic ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rieck A, Herlemann DPR, Jurgens K, Grossart H (2015) Particle-associated differ from free-living bacteria in surface waters of the Baltic Sea. Front Microbiol 6:1297. https://doi.org/10.3389/fmicb.2015.01297

    Article  PubMed  PubMed Central  Google Scholar 

  2. Simon M, Grossart H, Schweitzer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol 28:175–211. https://doi.org/10.3354/ame028175

    Article  Google Scholar 

  3. Crump BC, Armbrust EV, Baross JA (1999) Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Appl Environ Microbiol 65:3192–3204. https://doi.org/10.1016/j.aim.2006.01.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Lamontagne M, Holden PA (2003) Comparison of free-living and particle-associated bacterial communities in a coastal lagoon. Microb Ecol 46:228–237. https://doi.org/10.1007/s00248-001-1072-y

    Article  PubMed  CAS  Google Scholar 

  5. Grossart H (2010) Ecological consequences of bacterioplankton lifestyles: changes in concepts are needed. Environ Microbiol Rep 2:706–714. https://doi.org/10.1111/j.1758-2229.2010.00179.x

    Article  PubMed  Google Scholar 

  6. Yu Z, Carlson TN, Barron EJ, Schwartz FW (2001) On evaluating the spatial-temporal variation of soil moisture in the Susquehanna River Basin. Water Resour Res 37:1513–1326

    Google Scholar 

  7. Zhang R, Liu B, Lau SCK, Ki JS, Qian PY (2007) Particle-attached and free-living bacterial communities in a contrasting marine environment: Victoria Harbor, Hong Kong. FEMS Microbiol Ecol 61:496–508. https://doi.org/10.1111/j.1574-6941.2007.00353.x

    Article  PubMed  CAS  Google Scholar 

  8. Lapoussière A, Michel C, Starr M, Gosselin M, Poulin M (2011) Role of free-living and particle-attached bacteria in the recycling and export of organic material in the Hudson Bay system. J Mar Syst 88:434–445. https://doi.org/10.1016/j.jmarsys.2010.12.003

    Article  Google Scholar 

  9. Allgaier M, Grossart HP (2006) Seasonal dynamics and phylogenetic diversity of free-living and particle-associated bacterial communities in four lakes in northeastern Germany. Aquat Microb Ecol 45:115–128. https://doi.org/10.3354/ame045115

    Article  Google Scholar 

  10. Parveen B, Reveilliez JP, Mary I, Ravet V, Bronner G, Mangot JF, Domaizon I, Debroas D (2011) Diversity and dynamics of free-living and particle-associated Betaproteobacteria and Actinobacteria in relation to phytoplankton and zooplankton communities. FEMS Microbiol Ecol 77:461–476. https://doi.org/10.1111/j.1574-6941.2011.01130.x

    Article  PubMed  CAS  Google Scholar 

  11. Rösel S, Allgaier M, Grossart HP (2012) Long-term characterization of free-living and particle-associated bacterial communities in Lake Tiefwaren reveals distinct seasonal patterns. Microb Ecol 64:571–583. https://doi.org/10.1007/s00248-012-0049-3

    Article  PubMed  Google Scholar 

  12. Noble PA, Bidle KD, Fletcher M (1997) Natural microbial community compositions compared by a back-propagating neural network and cluster analysis of 5S rRNA. Appl Environ Microbiol 63:1762–1770

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Hollibaugh JT, Wong PS, Murrell MC (2000) Similarity of particle-associated and free-living bacterial communities in northern San Francisco Bay, California. Aquat Microb Ecol 21:103–114. https://doi.org/10.3354/ame021103

    Article  Google Scholar 

  14. Mohit V, Archambault P, Toupoint N, Lovejoy C (2014) Phylogenetic differences in attached and free-living bacterial communities in a temperate coastal lagoon during summer, revealed via high-throughput 16S rRNA gene sequencing. Appl Environ Microbiol 80:2071–2083. https://doi.org/10.1128/AEM.02916-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Riemann L, Winding A (2001) Community dynamics of free-living and particle-associated bacterial assemblages during a freshwater phytoplankton bloom. Microb Ecol 42:274–285. https://doi.org/10.1007/s00248-001-0018-8

    Article  PubMed  CAS  Google Scholar 

  16. Grossart H, Tang KW, Kiørboe T, Ploug H (2007) Comparison of cell-specific activity between free-living and attached bacteria using isolates and natural assemblages. FEMS Microbiol Lett 266:194–200. https://doi.org/10.1111/j.1574-6968.2006.00520.x

    Article  PubMed  CAS  Google Scholar 

  17. Kellogg CTE, Deming JW (2014) Particle-associated extracellular enzyme activity and bacterial community composition across the Canadian Arctic Ocean. FEMS Microbiol Ecol 89:360–375. https://doi.org/10.1111/1574-6941.12330

    Article  PubMed  CAS  Google Scholar 

  18. Tang X, Chao J, Gong Y, Wang Y, Wilhelm SW, Gao G (2017) Spatiotemporal dynamics of bacterial community composition in large shallow eutrophic Lake Taihu: high overlap between free-living and particle-attached assemblages. Limnol Oceanogr 62:1366–1382. https://doi.org/10.1002/lno.10502

    Article  CAS  Google Scholar 

  19. Ortega-Retuerta E, Joux F, Jeffrey WH, Ghiglione JF (2013) Spatial variability of particle-attached and free-living bacterial diversity in surface waters from the Mackenzie River to the Beaufort Sea (Canadian Arctic). Biogeosciences 10:2747–2759. https://doi.org/10.5194/bg-10-2747-2013

    Article  Google Scholar 

  20. Tang X, Li L, Shao K, Wang B, Cai X, Zhang L, Chao J, Gao G (2015) Pyrosequencing analysis of free-living and attached bacterial communities in Meiliang Bay, Lake Taihu, a large eutrophic shallow lake in China. Can J Microbiol 61:22–31. https://doi.org/10.1139/cjm-2014-0503

    Article  PubMed  CAS  Google Scholar 

  21. Ghiglione JF, Mevel G, Pujopay M, Mousseau L, Lebaron P, Goutx M (2007) Diel and seasonal variations in abundance, activity, and community structure of particle-attached and free-living bacteria in NW mediterranean sea. Microb Ecol 54:217–231. https://doi.org/10.1007/s00248-006-9189-7

    Article  PubMed  CAS  Google Scholar 

  22. Rink B, Gruner N, Brinkhoff T, Ziegelmuller K, Simon M (2011) Regional patterns of bacterial community composition and biogeochemical properties in the southern North Sea. Aquat Microb Ecol 63:207–222. https://doi.org/10.3354/ame01493

    Article  Google Scholar 

  23. Lecleir GR, Debruyn JM, Maas EW, Boyd PW, Wilhelm SW (2014) Temporal changes in particle-associated microbial communities after interception by nonlethal sediment traps. FEMS Microbiol Ecol 87:153–163. https://doi.org/10.1111/1574-6941.12213

    Article  PubMed  CAS  Google Scholar 

  24. Zhao D, Xu H, Zeng J, Cao X, Huang R, Shen F, Yu Z (2017) Community composition and assembly processes of the free-living and particle-attached bacteria in Taihu Lake. FEMS Microbiol Ecol 93:fix062. https://doi.org/10.1093/femsec/fix062

    Article  CAS  Google Scholar 

  25. Williams RJ, Howe A, Hofmockel KS (2014) Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Front Microbiol 5:358. https://doi.org/10.3389/fmicb.2014.00358

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A 103:12115–12120. https://doi.org/10.1038/srep08695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Barberán A, Bates ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6:343–351. https://doi.org/10.1038/ismej.2011.119

    Article  PubMed  CAS  Google Scholar 

  28. Ruan Q, Dutta D, Schwalbach MS, Steele JA, Fuhrman JA, Sun F (2006) Local similarity analysis reveals unique associations among marine bacterioplankton species and environmental factors. Bioinformatics 22:2532–2538. https://doi.org/10.1093/bioinformatics/btl417

    Article  PubMed  CAS  Google Scholar 

  29. Chaffron S, Rehrauer H, Pernthaler J, Von Mering C (2010) A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res. 20:947–959. https://doi.org/10.1101/gr.104521.109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Deng Y, Jiang Y, Yang Y, He Z, Luo F, Zhou J (2012) Molecular ecological network analyses. BMC Bioinf 13:113. https://doi.org/10.1186/1471-2105-13-113

    Article  Google Scholar 

  31. Proulx SR, Promislow DEL, Phillips PC (2005) Network thinking in ecology and evolution. Trends Ecol Evol 20:345–353. https://doi.org/10.1016/j.tree.2005.04.004

    Article  PubMed  Google Scholar 

  32. Krause AE, Frank KA, Mason DM, Ulanowicz RE, Taylor WW (2003) Compartments revealed in food-web structure. Nature 426:282–285. https://doi.org/10.1038/nature02115

    Article  PubMed  CAS  Google Scholar 

  33. Guimera R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433:895–900. https://doi.org/10.1038/nature03288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Moody J (2010) Race, school integration, and friendship segregation in America. Am J Sociol 107:679–716. https://doi.org/10.1086/338954

    Article  Google Scholar 

  35. Pastorsatorras R, Vespignani A (2001) Epidemic spreading in scale-free networks. Phys Rev Lett 86:3200–3203. https://doi.org/10.1103/PhysRevLett.86.3200

    Article  CAS  Google Scholar 

  36. Zhou J, Deng Y, Luo F, He Z, Yang Y (2011) Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. MBio 2:e00122–e00111. https://doi.org/10.1128/mBio.00122-11

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhao D, Shen F, Zeng J, Huang R, Yu Z, Wu QL (2016) Network analysis reveals seasonal variation of co-occurrence correlations between cyanobacteria and other bacterioplankton. Sci Total Environ 573:817–825. https://doi.org/10.1016/j.scitotenv.2016.08.150

    Article  PubMed  CAS  Google Scholar 

  38. Ju F, Xia Y, Guo F, Wang Z, Zhang T (2014) Taxonomic relatedness shapes bacterial assembly in activated sludge of globally distributed wastewater treatment plants. Environ. Microbiol. 16:2421–2432. https://doi.org/10.1111/1462-2920.12355

    Article  PubMed  CAS  Google Scholar 

  39. Harrell Jr FE (2008) Hmisc: harrell miscellaneous R package version: 3.5–2

  40. Junker BH, Schreiber F (2008) Analysis of biological networks Wiley Interscience. York, New

    Book  Google Scholar 

  41. Shannon P, Markiel A, Ozier O, Baliga NS, Wang J, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. https://doi.org/10.1101/gr.1239303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70:066111. https://doi.org/10.1103/PhysRevE.70.066111

    Article  CAS  Google Scholar 

  43. Csardi G, Nepusz T (2006) The igraph software package for complex network research. Int J Complex Syst 1695:1–9

    Google Scholar 

  44. Ju F, Zhang T (2015) Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. ISME J 9:683–695. https://doi.org/10.1038/ismej.2014.162

    Article  PubMed  CAS  Google Scholar 

  45. Guimerà R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433:895–900. https://doi.org/10.1038/nature03288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol 1:54. https://doi.org/10.1186/1752-0509-1-54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinf 9:559. https://doi.org/10.1186/1471-2105-9-559

    Article  CAS  Google Scholar 

  48. Jordano P, Bascompte J, Olesen JM (2003) Invariant properties in coevolutionary networks of plant–animal interactions. Ecol Lett 6:69–81. https://doi.org/10.1046/j.1461-0248.2003.00403.x

    Article  Google Scholar 

  49. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442. https://doi.org/10.1038/30918

    Article  PubMed  CAS  Google Scholar 

  50. Friedline CJ, Franklin RB, Mccallister SL, Rivera MC (2012) Microbial community diversity of the eastern Atlantic Ocean reveals geographic differences. Biogeosci Discuss 9:109–150. https://doi.org/10.5194/bgd-9-109-2012

    Article  Google Scholar 

  51. Cai H, Jiang H, Krumholz LR, Yang Z (2014) Bacterial community composition of size-fractioned aggregates within the phycosphere of cyanobacterial blooms in a eutrophic freshwater lake. PLoS One 9:109–150. https://doi.org/10.5194/bgd-9-109-2012

    Article  Google Scholar 

  52. Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. Proc Natl Acad Sci U S A 104:19891–19896. https://doi.org/10.1073/pnas.0706375104

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lewinsohn TM, Prado PI, Jordano P, Bascompte J, Olesen JM (2006) Structure in plant-animal interaction assemblages. Oikos 113:174–184. https://doi.org/10.1111/j.0030-1299.2006.14583.x

    Article  Google Scholar 

  54. Mougi A, Kondoh M (2012) Diversity of interaction types and ecological community stability. Science 337:349–351. https://doi.org/10.1126/science.1220529

    Article  PubMed  CAS  Google Scholar 

  55. Glockner FO, Zaichikov EF, Belkova NV, Denissova L, Pernthaler J, Pernthaler A, Amann R (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Appl Environ Microbiol 66:5053–5065. https://doi.org/10.1128/AEM.66.11.5053-5065.2000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Glockner FO, Fuchs BM, Amann R (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65:3721–3726

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Wu QL, Zwart G, Schauer M, Agterveld MPK, Hahn MW (2006) Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the tibetan plateau, China. Appl Environ Microbiol 72:5478–5485. https://doi.org/10.1128/AEM.00767-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Qin B, Li W, Zhu G, Zhang Y, Wu T, Gao G (2015) Cyanobacterial bloom management through integrated monitoring and forecasting in large shallow eutrophic Lake Taihu (China). J Hazard Mater 287:356–363. https://doi.org/10.1016/j.jhazmat.2015.01.047

    Article  PubMed  CAS  Google Scholar 

  59. Zeng J, Bian Y, Xing P, Wu QL (2012) Macrophyte species drive the variation of bacterioplankton community composition in a shallow freshwater lake. Appl Environ Microbiol 78:177–184. https://doi.org/10.1128/AEM.05117-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Raes J, Bork P (2008) Molecular eco-systems biology: towards an understanding of community function. Nat Rev Microbiol 6:693–699. https://doi.org/10.1038/nrmicro1935

    Article  PubMed  CAS  Google Scholar 

  61. Williams KP, Sobral BWS, Dickerman AW (2007) A robust species tree for the Alphaproteobacteria. J Bacteriol. 189:4578–4586. https://doi.org/10.1128/JB.00269-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Newton RJ, Jones SE, Eiler A, Mcmahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol R 75:14–49. https://doi.org/10.1128/MMBR.00028-10

    Article  CAS  Google Scholar 

  63. Eiler A, Bertilsson S (2004) Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environ Microbiol 6:1228–1243. https://doi.org/10.1111/j.1462-2920.2004.00657.x

    Article  PubMed  Google Scholar 

  64. Eiler A, Bertilsson S (2007) Flavobacteria blooms in four eutrophic lakes: linking population dynamics of freshwater bacterioplankton to resource availability. Appl Environ Microbiol 73:3511–3518. https://doi.org/10.1128/AEM.02534-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Angert ER, Northup DE, Reysenbach AL, Peek AS, Goebel BM, Pace NR (1998) Molecular phylogenetic analysis of a bacterial community in Sulphur River, Parker cave, Kentucky. Am Mineral 83:1583–1592. https://doi.org/10.2138/am-1998-11-1246

    Article  CAS  Google Scholar 

  66. Rudolph C, Wanner G, Huber R (2001) Natural communities of novel archaea and bacteria growing in cold sulfurous springs with a string-of-pearls-like morphology. Appl Environ Microbiol 67:2336–2344. https://doi.org/10.1128/AEM.67.5.2336-2344.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Kodama Y, Watanabe K (2003) Isolation and characterization of a sulfur-oxidizing chemolithotroph growing on crude oil under anaerobic conditions. Appl Environ Microbiol 69:107–112. https://doi.org/10.1128/AEM.69.1.107-112.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Todorov JR, Chistoserdov AY, Aller JY (2000) Molecular analysis of microbial communities in mobile deltaic muds of southeastern Papua New Guinea. FEMS Microbiol Ecol 33:147–155. https://doi.org/10.1111/j.1574-6941.2000.tb00737.x

    Article  PubMed  CAS  Google Scholar 

  69. Madrid VM, Taylor GT, Scranton MI, Chistoserdov A (2001) Phylogenetic diversity of bacterial and archaeal communities in the anoxic zone of the Cariaco Basin. Appl Environ Microbiol 67:1663–1674. https://doi.org/10.1128/AEM.67.4.1663-1674.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Corre E, Reysenbach A, Prieur D (2001) ε-Proteobacterial diversity from a deep-sea hydrothermal vent on the mid-Atlantic ridge. FEMS Microbiol Lett. 205:329–335. https://doi.org/10.1016/S0378-1097(01)00503-1

    Article  PubMed  CAS  Google Scholar 

  71. Longnecker K, Reysenbach A (2001) Expansion of the geographic distribution of a novel lineage of ε-Proteobacteria to a hydrothermal vent site on the southern East Pacific rise. FEMS Microbiol Ecol 35:287–293. https://doi.org/10.1111/j.1574-6941.2001.tb00814.x

    Article  PubMed  CAS  Google Scholar 

  72. Campbell BJ, Engel AS, Porter ML, Takai K (2006) The versatile ε-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4:458–468. https://doi.org/10.1038/nrmicro1414

    Article  PubMed  CAS  Google Scholar 

  73. Lópezgarcía P, Duperron S, Philippot P, Foriel J, Susini J, Moreira D (2003) Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the mid-Atlantic ridge. Environ. Microbiol. 5:961–976. https://doi.org/10.1046/j.1462-2920.2003.00495.x

    Article  CAS  Google Scholar 

  74. Taylor CD, Wirsen CO, Gaill F (1999) Rapid microbial production of filamentous sulfur mats at hydrothermal vents. Appl Environ Microbiol 65:2253–2255

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Alain K, Zbinden M, Bris NL, Lesongeur F, Querellou J, Gaill F, Cambonbonavita M (2004) Early steps in microbial colonization processes at deep-sea hydrothermal vents. Environ Microbiol 6:227–241. https://doi.org/10.1111/j.1462-2920.2003.00557.x

    Article  PubMed  Google Scholar 

  76. Carmichael WW (1994) The toxins of cyanobacteria. Sci Am 270:78–86. https://doi.org/10.1038/scientificamerican0194-78

    Article  PubMed  CAS  Google Scholar 

  77. Schütte UME, Abdo Z, Foster J, Ravel J, Bunge J, Solheim B, Forney LJ (2010) Bacterial diversity in a High Arctic glacial foreland. Mol Ecol 19(Suppl 1):54–66. https://doi.org/10.1111/j.1365-294X.2009.04479.x

    Article  PubMed  Google Scholar 

  78. Schmalenberger A, Hodge S, Bryant A, Hawkesford MJ, Singh BK, Kertesz MA (2008) The role of Variovorax and other Comamonadaceae in sulfur transformations by microbial wheat rhizosphere communities exposed to different sulfur fertilization regimes. Environ Microbiol 10:1486–1500. https://doi.org/10.1111/j.1462-2920.2007.01564.x

    Article  PubMed  CAS  Google Scholar 

  79. Sadaie T, Sadaie A, Takada M, Hamano K, Ohnishi J, Ohta N, Matsumoto K, Sadaie Y (2007) Reducing sludge production and the domination of Comamonadaceae by reducing the oxygen supply in the wastewater treatment procedure of a food-processing factory. Biosci. Biotechnol. Biochem. 71:791–799. https://doi.org/10.1271/bbb.60632

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (41571108 and 41671078), the Natural Science Foundation of Jiangsu Province, China (BK20151614), the National Key Technology R&D Program (2015BAD13B01), the Special Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (20145027312, 20155019012), and Qing Lan Project of Jiangsu Province, and KVH was supported through a US National Science Foundation Graduate Research Fellowship under Grant No. 1650686.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zeng.

Electronic supplementary material

ESM 1

(DOCX 3749 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Zhao, D., Huang, R. et al. Contrasting Network Features between Free-Living and Particle-Attached Bacterial Communities in Taihu Lake. Microb Ecol 76, 303–313 (2018). https://doi.org/10.1007/s00248-017-1131-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-1131-7

Keywords

Navigation