Skip to main content

Advertisement

Log in

Photosynthetic Picoeukaryotes in the Land-Fast Ice of the White Sea, Russia

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The White Sea is a unique marine environment combining features of temperate and Arctic seas. The composition and abundance of photosynthetic picoeukaryotes (PPEs) were investigated in the land-fast ice of the White Sea, Russia, in March 2013 and 2014. High-throughput tag sequencing (Illumina MiSeq system) of the V4 region of the 18S rRNA gene was used to reveal the diversity of PPE ice community. The integrated PPE abundance varied from 11 × 106 cells/m2 to 364 × 106 cells/m2; the integrated biomass ranged from 0.02 to 0.26 mg С/m2. The composition of sea-ice PPEs was represented by 16 algae genera belonging to eight classes and three super-groups. Chlorophyta, especially Mamiellophyceae, dominated among ice PPEs. The detailed analysis revealed the latent diversity of Micromonas and Mantоniella. Micromonas clade E2 revealed in the subarctic White Sea ice indicates that the area of distribution of this species is wider than previously thought. We suppose there exists a new Micromonas clade F. Micromonas clade C and Minutocellulus polymorphus were first discovered in the ice and extend the modern concept of sympagic communities’ diversity generally and highlights the importance of further targeting subarctic sea ice for microbial study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Polyakov IV, Pnyushkov AV, Timokhov LA (2012) Warming of the intermediate Atlantic water of the Arctic Ocean in the 2000s. J Climate 25:8362–8370

  2. Swart NC, Fyfe JC, Hawkins E, Kay JE, Jahn A (2015) Influence of internal variability on Arctic sea-ice trends. Nat Clim Chang 5:86–89

    Article  Google Scholar 

  3. Wassmann P, Reigstad M (2011) Future Arctic Ocean seasonal ice zones and implications for pelagic-benthic coupling. Oceanography 24(3):220–231

    Article  Google Scholar 

  4. Gradinger R (2009) Sea-ice algae: major contributors to primary production and algal biomass in the Chukchi and Beaufort Seas during May/June 2002. Deep-Sea Res II Top Stud Oceanogr 56:1201–1212

    Article  CAS  Google Scholar 

  5. Deming JW (2010) Sea ice bacteria and viruses. In: Thomas DN, Dieckmann GS (eds) Sea Ice. Blackwell Science, Oxford

    Google Scholar 

  6. Poulin M, Daugbjerg N, Gradinger R, Ilyash L, Ratkova T, Quillfeldt von C (2011) The pan-Arctic biodiversity of marine pelagic and sea-ice unicellular eukaryotes: a first-attempt assessment. Mar Biodivers 1:13–28

    Article  Google Scholar 

  7. Vaulot D, Eikrem W, Viprey M, Moreau H (2008) The diversity of small eukaryotic phytoplankton (< 3 μm) in marine ecosystems. FEMS Microbiol Rev 32:795–820

    Article  CAS  PubMed  Google Scholar 

  8. Eddie B, Juhl A, Krembs C, Baysinger C, Neuer S (2010) Effect of environmental variables on eukaryotic microbial community structure of land-fast Arctic sea ice. Environ Microbiol 12:797–809. https://doi.org/10.1111/j.1462-2920.2009.02126.x

    Article  CAS  PubMed  Google Scholar 

  9. Bachy C, Lopez-Garcia P, Vereshchaka A, Moreira D (2011) Diversity and vertical distribution of microbial eukaryotes in the snow, sea ice and seawater near the north pole at the end of the polar night. Front Microbiol 2:106. https://doi.org/10.3389/fmicb.2011.00106

    Article  PubMed  PubMed Central  Google Scholar 

  10. Majaneva M, Rintala JM, Piisila M, Fewer DP, Blomster J (2012) Comparison of wintertime eukaryotic community from sea ice and open water in the Baltic Sea, based on sequencing of the 18S rRNA gene. Polar Biol 35:875–889

    Article  Google Scholar 

  11. Comeau AM, Philippe B, Thaler M, Gosselin M, Poulin M, Lovejoy C (2013) Protists in Arctic drift and land-fast sea ice. J Phycol 49:229–240

    Article  PubMed  Google Scholar 

  12. Stecher A, Neuhaus S, Lange B, Frickenhaus S, Beszteri B, Kroth PG, Valentin K (2016) rRNA and rDNA based assessment of sea ice protist biodiversity from the central Arctic Ocean. EJP. https://doi.org/10.1080/09670262.2015.1077395

  13. Mikkelsen D, Rysgaard S, Glud R (2008) Microalgal composition and primary production in Arctic sea ice: a seasonal study from Kobbefjord (Kangerluarsunnguaq), West Greenland. Mar Ecol Prog Ser 368:65–74

    Article  CAS  Google Scholar 

  14. Tamelander T, Reigstad M, Hop H, Carroll ML, Wassmann P (2008) Pelagic and sympagic contribution of organic matter to zooplankton and vertical export in the Barents Sea marginal ice zone. Deep-Sea Res II 55:2330–2339

    Article  CAS  Google Scholar 

  15. Sazhin AF, Rat’kova TN, Kosobokova KN (2004) Inhabitants of the White Sea coastal ice during the early spring period. Oceanology 44(1):82–89

    Google Scholar 

  16. Riedel A, Michel C, Gosselin M (2007) Grazing of large-sized bacteria by sea-ice heterotrophic protists on the Mackenzie shelf during the winter-spring transition. Aquat Microb Ecol 50:25–38

    Article  Google Scholar 

  17. Mundy CJ, Gosselin M, Ehn JK, Belzile C, Poulin M, Alou E, Roy S, Hop H, Lessard S, Papakyriakou TN, Barber DG, Stewart J (2011) Characteristics of two distinct high-light acclimated algal communities during advanced stages of sea ice melt. Polar Biol 34:1869–1886

  18. Różańska M, Poulin M, Gosselin M (2008) Protist entrapment in newly formed sea ice in the Coastal Arctic Ocean. J Mar Syst 74:887–901

  19. Piwosz K, Wiktor JM, Niemi A, Tatarek A, Michel C (2013) Mesoscale distribution and functional diversity of picoeukaryotes in the first-year sea ice of the Canadian Arctic. ISME J 7:1461–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meiners K, Fehling J, Granskog MA, Spindler M (2002) Abundance, biomass and composition of biota in Baltic Sea ice and underlying water (March 2000). Polar Biol 25:761–770

    Google Scholar 

  21. Berger V, Dahle S, Galaktionov K, Kosobokova X, Naumov A, Rat'kova T, Savinov V, Savinova T (2001) White Sea. Ecology and Environment. St-Petersburg- Tromsø

  22. Krell A, Ummenhofer C, Kattner G, Naumov A, Evans D, Dieckmann GS, Thomas DN (2003) The biology and chemistry of land fast ice in the White Sea, Russia—a comparison of winter and spring conditions. Polar Biol 26:707–719

  23. Mikhailovsky GA, Zhitina LS (1989) Cryoplankton flora of the White Sea and its seasonal dynamics, revealed by the method of correlation analysis. Oceanology 29(5):796–803 (in Russian)

    Google Scholar 

  24. Sazhin AF, Sapozhnikov FV, Rat’kova TN, Romanova ND, Shevchenko VP, Filippov AS (2011) The inhabitants of the spring ice, under-ice water, and sediments of the White Sea in the estuarine zone of the Severnaya Dvina River. Oceanology 51(2):295–305

    Article  Google Scholar 

  25. Melnikov IA, Dikarev SN, Egorov VG, Kolosova EG, Zhitina LS (2005) Structure of the coastal ice ecosystem in the zone of sea-river interactions. Oceanology 45(4):511–519

    Google Scholar 

  26. Ratkova TN, Wassmann P (2005) Sea ice algae in the White and Barents seas: composition and origin. Polar Res 24:95–110

    Article  Google Scholar 

  27. Ilyash LV, Zhitina LS, Kudryavtseva VA, Mel’nikov IA (2012) Seasonal dynamics of algae species composition and biomass in the coastal ice of Kandalaksha Bay, the White Sea. Biol Bull Rev 73:459–470 (in Russian)

    Google Scholar 

  28. Gogorev RМ (1998) Bacillariophyta of late-spring ice of the White Sea. Novosti Sist Nizsh Rast 32:8–13 (in Russian)

    Google Scholar 

  29. Kudryavtseva VA, Belevich TA, Zhitina LS (2017) Diatoms in the ice of Velikaya Salma strait, the White Sea, before the spring algal bloom. Mosc Univ Biol Sci Bull 72(2):52–58

  30. Belevich TA, Ilyash LV, Milyutina IA, Logacheva MD, Goryunov DV, Troitsky AV (2015) Metagenomic analyses of White Sea picoalgae: first data. Biochemistry 80:1514–1521

    CAS  PubMed  Google Scholar 

  31. Stroeve JC, Kattsov V, Barrett A, Serreze M, Pavlova T, Holland M, Meier WN (2012) Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett. https://doi.org/10.1029/2012GL052676

  32. Pantyulin AN (2012) Dynamics, structure, and water masses. In: Lisitzin AP (ed) The White Sea system, vol. 2: water column and interacting atmosphere, cryosphere, the river run-off, and biosphere. Scientific World, Moscow (in Russian)

  33. Garrison DL, Buck KR (1986) Organism losses during ice melting: a serious bias in sea ice community studies. Polar Biol 6:237–239. https://doi.org/10.1007/BF00443401

  34. Arar EJ, Collins GB (1997) Method 445.0 in vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  35. Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 5:403–424

    Article  Google Scholar 

  36. Verity PG, Robertson CY, Tronzo CR, Endrews MG, Nelson JR, Sieracki ME (1992) Relationship between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol Oceanogr 37:1434–1446

    Article  CAS  Google Scholar 

  37. López-García P, Rodríguez-Valera F, Pedrós-Alió C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409(6820):603–607

    Article  PubMed  Google Scholar 

  38. Moon-van der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610

    Article  CAS  PubMed  Google Scholar 

  39. Elwood HJ, Olsen GJ, Sogin ML (1985) The small-subunit ribosomal RNA gene sequences from the hypotrichous ciliates Oxytricha nova and Stylonychia pustulata. Mol Biol Evol 2:399–410

    CAS  PubMed  Google Scholar 

  40. Katoh K, Misawa K, Kuma KI, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

  42. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79(17):5112–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  CAS  PubMed  Google Scholar 

  45. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden T (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  47. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F (2004) Parallel metropolis-coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20:407–415

    Article  CAS  PubMed  Google Scholar 

  49. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guiry MD, Guiry GM. (2017) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.Algaebase.Org; searched on 01 June 2017

  51. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E, Plymouth

    Google Scholar 

  52. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  53. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  54. Slapeta J, López-García P, Moreira D (2006) Global dispersal and ancient cryptic species in the smallest marine eukaryotes. Mol Biol Evol 23:23–29

    Article  CAS  PubMed  Google Scholar 

  55. Worden AZ, Lee J-H, Mock T, et al. (2009) Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324:268–272

    Article  CAS  PubMed  Google Scholar 

  56. Vaulot D, Romari K, Not F (2002) Are autotrophs less diverse than heterotrophs in marine picoplankton? Trends Microbiol 10:266–267

    Article  CAS  PubMed  Google Scholar 

  57. Nielsen KM, Johnsen PJ, Bensasson D, Daffonchio D (2007) Release and persistence of extracellular DNA in the environment. Environ Biosaf Res 6:37–53

    Article  CAS  Google Scholar 

  58. Charvet S, Vincent WF, Comeau A, Lovejoy C (2012) Pyrosequencing analysis of the protist communities in a high Arctic meromictic lake: DNA preservation and change. Front Microbiol 3:422. https://doi.org/10.3389/fmicb.2012.00422

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhu F, Massana R, Not F, Marie D, Vaulot D (2005) Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol 52:79–92

    Article  CAS  PubMed  Google Scholar 

  60. Sarno D, Kooistra WHCF, Medlin LK, Percopo I, Zingone A (2005) Diversity in the genus Skeletonema (Bacillariophyceae) II. An assessment of the taxonomy of S. costatum-like species with the description of four new species. J Phycol 41:151–176

    Article  Google Scholar 

  61. Luddington I, Kaczmarska I, Lovejoy C (2012) Distance and character-based evaluation of the V4 region of the 18S rRNA gene for the identification of diatoms (Bacillariophyceae). PLoS One 7:e45664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kataoka T, Yamaguchy H, Sato M, Watanabe T, Taniuchi Y, Kuwata A, Kawachi M (2017) Seasonal and geographical distribution of near-surface small photosynthetic eukaryotes in the western North Pacific determined by pyrosequencing of 18S rDNA. FEMS Microbiol Ecol 93(2):fiw229

    Article  PubMed  Google Scholar 

  63. Montagnes DJS, Berges JA, Harrison PJ, Taylor FJR (1994) Estimating carbon, nitrogen, protein and chlorophyll a from volume in marine phytoplankton. Limnol Oceanogr 39:1044–1060

    Article  CAS  Google Scholar 

  64. Mender-Deuer S, Lessard E, Satterberg J (2001) Effect of preservation on dinoflagellate and diatom cell volume and consequences for carbon biomass predictions. Mar Ecol Prog Ser 222:41–50

    Article  Google Scholar 

  65. Zarauz L, Irigoien X (2008) Effects of Lugol’s fixation on the size structure of natural nano–microplankton samples, analyzed by means of an automatic counting method. J Plankton Res 30:1297–1303

    Article  Google Scholar 

  66. Kilias ES, Noethig E-M, Wolf C, Metfies K (2014) Picoeukaryote plankton composition off West Spitsbergen at the entrance to the Arctic Ocean. J Eukaryot Microbiol 61:569–579

    Article  PubMed  Google Scholar 

  67. Monier A, Comte J, Babin M, Forest A, Matsuoka A, Lovejoy C (2015) Oceanographic structure drives the assembly processes of microbial eukaryotic communities. ISME J 9:990–1002

  68. Zhang F, He J, Lin L, Jin H (2015) Dominance of picophytoplankton in the newly open surface water of the central Arctic Ocean. Polar Biol 38:1081–1089

  69. Metfies K, von Appen W-J, Kilias E, Nicolaus A, Nöthig E-M (2016) Biogeography and photosynthetic biomass of Arctic marine pico-eukaryotes during summer of the record sea ice minimum 2012. PLoS ONE 11:e0148512. https://doi.org/10.1371/journal.pone.0148512

  70. Simmons MP, Bachy C, Sudek S, van Baren MJ, Sudek L, Ares M, et al. (2015) Intron invasions trace algal speciation and reveal nearly identical Arctic and Antarctic Micromonas populations. Mol Biol Evol 32:2219–2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Baren MJ, Bachy C, Reistetter EN, et al. (2016) Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants. BMC Genomics 17:267. https://doi.org/10.1186/s12864-016-2585-6

    Article  PubMed  PubMed Central  Google Scholar 

  72. Foulon E, Not F, Jalabert F, Cariou T, Massana R, Simon N (2008) Ecological niche partitioning in the picoplanktonic green alga Micromonas pusilla: evidence from environmental surveys using phylogenetic probes. Environ Microbiol 10:2433–2443

    Article  CAS  PubMed  Google Scholar 

  73. Lovejoy C, Vincent WF, Bonilla S, Roy S, Martineau MJ, Terrado R, Potvin M, Massana R, Pedrós-Alió C (2007) Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in arctic seas. J Phycol 43:78–89

    Article  CAS  Google Scholar 

  74. Wolf M, Chen S, Song J, Ankenbrand M, Muller T (2013) Compensatory base changes in ITS2 secondary structures correlate with the biological species concept despite intragenomic variability in ITS2 sequences—a proof of concept. PLoS ONE 8:e66726. https://doi.org/10.1371/journal.pone.0066726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Coleman AW, Vacquier VD (2002) Exploring the phylogenetic utility of ITS sequences for animals: a test case for abalone (Haliotis). J Mol Evol 54:246–257

    Article  CAS  PubMed  Google Scholar 

  76. Romari K, Vaulot D (2004) Composition and temporal variability of picoeukaryote communities at a coastal site of the English Channel from 18S rDNA sequences. Limnol Oceanogr 49:784–798

    Article  Google Scholar 

  77. Sørensen N, Daugbjerg N, Gabrielsen TM (2012) Molecular diversity and temporal variation of picoeukaryotes in two Arctic fjords, Svalbard. Polar Biol 35:519–533. https://doi.org/10.1007/s00300-011-1097-8

  78. Kilias E, Wolf C, Nöthig EM, Peeken I, Metfies K (2013) Protist distribution in the western Fram Strait in summer 2010 based on 454-pyroseqeuncing of 18S rDNA. J Phycol 49:996–1010. https://doi.org/10.1111/jpy.12109

    CAS  PubMed  Google Scholar 

  79. Ikävalko J, Thomsen HA (1997) The Baltic Sea ice biota (march 1994): a study of the protistan community. Eur J Protistol 33:229–243

    Article  Google Scholar 

  80. Majaneva M, Blomster J, Müllera S, Autioc R, Majanevaa S, Hyytiäinena K, Nagaid S, Rintalaa J-M (2017) Sea-ice eukaryotes of the Gulf of Finland, Baltic Sea, and evidence for herbivory on weakly shade-adapted ice algae. Eur J Protistol 57:1–15

    Article  PubMed  Google Scholar 

  81. Komuro C, Narita H, Imai K, Nojiri Y, Jordan RW (2005) Microplankton assemblages at station KNOT in the subarctic western Pacific, 1999–2000. Deep-Sea Res Part II 52:2206–2217

    Article  Google Scholar 

  82. Ichinomiya M, Nakamachi M, Shimizu Y, Kuwata A (2013) Growth characteristics and vertical distribution of Triparma laevis (Parmales) during summer in the Oyashio region, western North Pacific. Aquat Microb Ecol 68:107–116

    Article  Google Scholar 

  83. Ichinomiya M, Lopes dos Santos A, Gourvil P, et al. (2016) Diversity and oceanic distribution of the Parmales (Bolidophyceae), a picoplanktonic group closely related to diatoms. ISME J 10:2419–2434

    Article  PubMed  PubMed Central  Google Scholar 

  84. Werner I, Ikävalko J, Schünemann H (2007) Sea-ice algae in Arctic pack ice during late winter. Polar Biol 30:1493–1504

  85. Rintala J-M, Piiparinen J, Uusikivi J (2010) Drift-ice and under-ice water communities in the Gulf of Bothnia (Baltic Sea). Polar Biol 33:179–191

  86. Liu H, Probert I, Uitz J, Claustre H, Aris-Brosou S, Frada M, Not F, de Vargasa C (2009) Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans. Proc Natl Acad Sci U S A 106(31):12803–12808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Marie D, Shi XL, Rigaut-Jalabert F, Vaulot D (2010) Use of flow cytometric sorting to better assess the diversity of small photosynthetic eukaryotes in the English Channel. FEMS Microbiol Ecol 72:165–178

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Russian Science Foundation (grant no. 14-50-00029, DNA sequencing and phylogenetic analysis) and by the Russian Foundation for Basic Research (grant no. 16-05-00502, samples collecting and processing). We thank Dr. A.I. Azovsky (Moscow State University, Moscow, Russia) for help in statistical analyses and the stuff of the White Sea Biological Station, Lomonosov Moscow State University, for kind assisting in samples collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Belevich.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary S1

The description of the script used to receive the consensus sequence of the OTUs. (DOCX 13 kb)

Figure S2

Air temperature at the White Sea Biological Station (shaded area corresponds to sampling period). (GIF 68 kb)

High resolution image (TIFF 10233 kb)

Figure S3

Compensatory base changes in the helices of the 18S rRNA secondary structure: (a) Micromonas (helices E23_4,7); (b) Mantoniella (helices E23_1 and H25). The CBCs are shown in rectangles, hemi-СВСs – in ellipses. (GIF 50 kb)

High resolution image (TIFF 3312 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belevich, T.A., Ilyash, L.V., Milyutina, I.A. et al. Photosynthetic Picoeukaryotes in the Land-Fast Ice of the White Sea, Russia. Microb Ecol 75, 582–597 (2018). https://doi.org/10.1007/s00248-017-1076-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-1076-x

Keywords

Navigation