Skip to main content
Log in

Diet Versus Phylogeny: a Comparison of Gut Microbiota in Captive Colobine Monkey Species

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

An Erratum to this article was published on 11 September 2017

This article has been updated

Abstract

Both diet and host phylogeny shape the gut microbial community, and separating out the effects of these variables can be challenging. In this study, high-throughput sequencing was used to evaluate the impact of diet and phylogeny on the gut microbiota of nine colobine monkey species (N = 64 individuals). Colobines are leaf-eating monkeys that fare poorly in captivity—often exhibiting gastrointestinal (GI) problems. This study included eight Asian colobines (Rhinopithecus brelichi, Rhinopithecus roxellana, Rhinopithecus bieti, Pygathrix nemaeus, Nasalis larvatus, Trachypithecus francoisi, Trachypithecus auratus, and Trachypithecus vetulus) and one African colobine (Colobus guereza). Monkeys were housed at five different captive institutes: Panxi Wildlife Rescue Center (Guizhou, China), Beijing Zoo, Beijing Zoo Breeding Center, Singapore Zoo, and Singapore Zoo Primate Conservation Breeding Center. Captive diets varied widely between institutions, but within an institution, all colobine monkey species were fed nearly identical or identical diets. In addition, four monkey species were present at multiple captive institutes. This allowed us to parse the effects of diet and phylogeny in these captive colobines. Gut microbial communities clustered weakly by host species and strongly by diet, and overall, colobine phylogenetic relationships were not reflected in gut microbiota analyses. Core microbiota analyses also identified several key taxa—including microbes within the Ruminococcaceae and Lachnospiraceae families—that were shared by over 90% of the monkeys in this study. Microbial species within these families include many butyrate producers that are important for GI health. These results highlight the importance of diet in captive colobines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 11 September 2017

    An erratum to this article has been published.

References

  1. Ley R, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes Science 320:1647–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang C, Zhang M, Wang S, Han R, Cao Y, Hua W, Mao Y, Zhang X, Pang X, Wei C, Zhao G, Chen Y, Zhao L (2010) Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice ISME J 4:232–241. doi:10.1038/ismej.2009.112

    Article  CAS  PubMed  Google Scholar 

  3. Zhao L, Wang G, Siegel P, He C, Wang H, Zhao W, Zhai Z, Tian F, Zhao J, Zhang H, Sun Z, Chen W, Zhang Y, Meng H (2013) Quantitative genetic background of the host influences gut microbiomes in chickens Sci Rep 3. doi:10.1038/srep01163

  4. McKnite AM, Perez-Munoz ME, Lu L, Williams EG, Brewer S, Andreux PA, Bastiaansen JWM, Wang X, Kachman SD, Auwerx J, Williams RW, Benson AK, Peterson DA, Ciobanu DC (2012) Murine gut microbiota is defined by host genetics and modulates variation of metabolic traits PLoS One 7:e39191. doi:10.1371/journal.pone.0039191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, Bell JT, Spector TD, Keinan A, Ley RE, Gevers D, Clark AG (2015) Host genetic variation impacts microbiome composition across human body sites Genome Biol 16:191. doi:10.1186/s13059-015-0759-1

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang M, Radlowski EC, Monaco MH, Fahey GC, Gaskins HR, Donovan SM (2013) Mode of delivery and early nutrition modulate microbial colonization and fermentation products in neonatal piglets J Nutr 143:795–803. doi:10.3945/jn.112.173096

    Article  CAS  PubMed  Google Scholar 

  7. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet J, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa Proc Natl Acad Sci U S A 107:14691–14696. doi:10.1073/pnas.1005963107

    Article  PubMed  PubMed Central  Google Scholar 

  8. Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH (2013) The influence of diet on the gut microbiota Pharmacol Res 69:52–60. doi:10.1016/j.phrs.2012.10.020

    Article  CAS  PubMed  Google Scholar 

  9. Burin G, Kissling WD, Guimarães PR, Şekercioğlu ÇH, Quental TB (2016) Omnivory in birds is a macroevolutionary sink Nat Commun 7:11250. doi:10.1038/ncomms11250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Delsuc F, Metcalf JL, Parfrey LW, Song SJ, González A, Knight R (2013) Convergence of gut microbiomes in myrmecophagous mammals Mol Ecol 23:1301–1317. doi:10.1111/mec.12501

    Article  PubMed  Google Scholar 

  11. Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, Henrissat B, Knight R, Gordon JI (2011) Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans Science 332:970–974. doi:10.1126/science.1198719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ochman H, Worobey M, Kuo C-H, Ndjango J-BN, Peeters M, Hahn BH, Hugenholtz P (2010) Evolutionary relationships of wild hominids recapitulated by gut microbial communities PLoS Biol 8:e1000546. doi:10.1371/journal.pbio.1000546

    Article  PubMed  PubMed Central  Google Scholar 

  13. Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF (2011) Evidence for a core gut microbiota in the zebrafish ISME J 5:1595–1608. doi:10.1038/ismej.2011.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sanders JG, Powell S, Kronauer DJC, Vasconcelos HL, Frederickson ME, Pierce NE (2014) Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes Mol Ecol 23:1268–1283. doi:10.1111/mec.12611

    Article  PubMed  Google Scholar 

  15. Tzeng T-D, Pao Y-Y, Chen P-C, Weng FC-H, Jean WD, Wang D (2015) Effects of host phylogeny and habitats on gut microbiomes of oriental river prawn (Macrobrachium nipponense) PLoS One 10:e0132860. doi:10.1371/journal.pone.0132860

    Article  PubMed  PubMed Central  Google Scholar 

  16. Carrillo-Araujo M, Taş N, Alcántara-Hernández RJ, Gaona O, Schondube JE, Medellín RA, Jansson JK, Falcón LI (2015) Phyllostomid bat microbiome composition is associated to host phylogeny and feeding strategies Front Microbiol 6:447. doi:10.3389/fmicb.2015.00447

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chivers D (1994) Functional anatomy of the gastrointestinal tract. In: Davies AG, Oates JF (eds) Colobine monkeys: their ecology, behaviour and evolution. Cambridge University Press, Cambridge, pp. 205–227

    Google Scholar 

  18. Kay RNB, Davies AG (1994) Digestive physiology. In: Davies AG, Oates J (eds) Colobine monkeys: their ecology, behavior and evolution. Cambridge University Press, Cambridge, pp. 229–249

    Google Scholar 

  19. Caton JM (1998) The morphology of the gastrointestinal tract of Pygathrix nemaeus (Linneaus, 1771). In: Jablonski NG (ed) The natural history of the doucs and snub-nosed monkeys. World Scientific Publishing Co., Singapore, pp. 129–154

    Chapter  Google Scholar 

  20. Lambert JE (1998) Primate digestion: interactions among anatomy, physiology, and feeding ecology Evol Anthropol:8–20

  21. Nijboer J, Clauss M (2006) The digestive physiology of colobine primates. In: Nijboer J (ed) Fibre intake and faeces quality in leaf-eating primates. Utrecht Publishing and Archiving Service, The Netherlands, pp. 9–28

    Google Scholar 

  22. Bauchop T, Martucci RW (1968) Ruminant-like digestion of the langur monkey Science 161:698–700

    Article  CAS  PubMed  Google Scholar 

  23. Yildirim S, Yeoman C, Sipos M, Torralba M, Wilson B, Goldberg T, Stumpf R, Leigh S, White B, Nelson K (2010) Characterization of the fecal microbiome from non-human wild primates reveals species specific microbial communities PLoS One 5:e13963

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wu C, Yang F, Gao R, Huang Z, Xu B, Dong Y, Hong T, Tang X (2010) Study of fecal bacterial diversity in Yunnan snub-nosed monkey (Rhinopithecus bieti) using phylogenetic analysis of cloned 16S rRNA gene sequences Af J Biotech 9:6278–6289

    CAS  Google Scholar 

  25. Amato KR, Metcalf JL, Song SJ, Hale VL, Clayton J, Ackermann G, Humphrey G, Niu K, Cui D, Zhao H, Schrenzel MD, Tan CL, Knight R, Braun J (2016) Using the gut microbiota as a novel tool for examining colobine primate GI health Glob Ecol Conserv 7:225–237. doi:10.1016/j.gecco.2016.06.004

    Article  Google Scholar 

  26. Edwards M (1997) Leaf-eating primates: nutrition and dietary husbandry. Nutrition Advisory Group Handbook

  27. Agoramoorthy G, Alagappasamy C, Hsu MJ (2004) Can proboscis monkeys be successfully maintained in captivity? A case of swings and roundabouts Zoo Biol 23:433–544. doi:10.1002/zoo.20018

    Article  Google Scholar 

  28. Davies AG, Oates J (1994) Colobine monkeys: their ecology, behavior, and evolution. Cambridge University Press, New York,

    Google Scholar 

  29. Sutherland-Smith M, Janssen D, Lowenstine L (1998) Gastric analyses of colobine primates. AAZV Conference Proceedings: 136–139

  30. Clayton JB, Vangay P, Huang H, Ward T, Hillmann BM, Al-Ghalith GA, Travis DA, Long HT, Tuan BV, Minh VV, Cabana F, Nadler T, Toddes B, Murphy T, Glander KE, Johnson TJ, Knights D (2016) Captivity humanizes the primate microbiome Proc Natl Acad Sci 113:10376–10381. doi:10.1073/pnas.1521835113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Amato K, Yeoman C, Kent A, Righini N, Carbonero F, Estrada A, Gaskins H, Stumpf R, Yildirim S, Torralba M, Gillis M, Wilson B, Nelson K, White B, Leigh S (2013) Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes ISME J 7:1344–1353. doi:10.1038/ismej.2013.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang XP, Yu L, Roos C, Ting N, Chen CP, Wang J, Zhang Y (2012) Phylogenetic relationships among the colobine monkeys revisited: new insights from analyses of complete mt genomes and 44 nuclear non-coding markers PLoS One 7:e36274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liedigk R, Yang M, Jablonski NG, Momberg F, Geissmann T, Lwin N, Hla TH, Liu Z, Wong B, Ming L, Yongcheng L, Zhang Y-PP, Nadler T, Zinner D, Roos C (2012) Evolutionary history of the odd-nosed monkeys and the phylogenetic position of the newly described Myanmar snub-nosed monkey Rhinopithecus strykeri PLoS One 7:e37418. doi:10.1371/journal.pone.0037418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hale VL, Tan CL, Knight R, Amato KR (2015) Effect of preservation method on spider monkey (Ateles geoffroyi) fecal microbiota over 8 weeks J Microbiol Methods 113:16–26. doi:10.1016/j.mimet.2015.03.021

    Article  PubMed  Google Scholar 

  35. Hale VL, Tan CL, Niu K, Yang Y, Cui D, Zhao H, Knight R, Amato KR (2016) Effects of field conditions on fecal microbiota J Microbiol Methods 130:180–188. doi:10.1016/j.mimet.2016.09.017

    Article  PubMed  Google Scholar 

  36. Gilbert JA, Folker M, Dion A, Pavan B, Brown CT, Christopher TB, Narayan D, Jonathan AE, Dirk E, Dawn F, Wu F, Daniel H, Janet J, Rob K, James K, Eugene K, Kostas K, Joel K, Nikos K, Rachel M, Alice M, Christopher Q, Jeroen R, Alexander S, Ashley S, Rick S (2010) Meeting report: the terabase metagenomics workshop and the vision of an Earth Microbiome Project Stand Genomic Sci 3:243–248. doi:10.4056/sigs.1433550

    Article  PubMed  PubMed Central  Google Scholar 

  37. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2011) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea ISME J 6:610–618. doi:10.1038/ismej.2011.139

    Article  PubMed  PubMed Central  Google Scholar 

  39. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment Bioinformatics 26:266–267. doi:10.1093/bioinformatics/btp636

    Article  CAS  PubMed  Google Scholar 

  40. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy Appl Environ Microbiol 73:5261–5267. doi:10.1128/aem.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mackie RI, Sghir A, Gaskins HR (1999) Developmental microbial ecology of the neonatal gastrointestinal tract Am J Clin Nutr 69:1035S–1045S

    CAS  PubMed  Google Scholar 

  42. Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome Nat Rev Microbiol 9:279–290. doi:10.1038/nrmicro2540

    Article  CAS  PubMed  Google Scholar 

  43. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities Appl Environ Microbiol 71:8228–8235. doi:10.1128/aem.71.12.8228-8235.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Knights D, Costello E, Knight R (2011) Supervised classification of human microbiota FEMS Microbiol Rev 35:343–359. doi:10.1111/j.1574-6976.2010.00251.x

    Article  CAS  PubMed  Google Scholar 

  45. Breiman L (2001) Random forests Mach Learn 45:5–32. doi:10.1023/a:1010933404324

    Article  Google Scholar 

  46. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) vegan: community ecology package. R package version 20-10

  47. Soderholm JD, Perdue MH (2001) Stress and intestinal barrier function Am J Phys 280:G7–G13

    CAS  Google Scholar 

  48. O'Mahony SM, Marchesi JR, Scully P, Codling C, Ceolho A-M, Quigley EMM, Cryan JF, Dinan TG (2009) Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses Biol Psychiatry 65:263–267

    Article  PubMed  Google Scholar 

  49. Anderson K, Russell J, Moreau C, Kautz S, Sullam K, Hu Y, Basinger U, Mott B, Buck N, Wheeler D (2012) Highly similar microbial communities are shared among related and trophically similar ant species Mol Ecol 21:2282–2296. doi:10.1111/j.1365-294X.2011.05464.x

    Article  PubMed  Google Scholar 

  50. Nelson T, Rogers T, Carlini A, Brown M (2013) Diet and phylogeny shape the gut microbiota of Antarctic seals: a comparison of wild and captive animals Environ Microbiol 15:1132–1145. doi:10.1111/1462-2920.12022

    Article  CAS  PubMed  Google Scholar 

  51. Kohl KD, Skopec MM, Dearing MD (2014) Captivity results in disparate loss of gut microbial diversity in closely related hosts Conserv Physiol 2:cou009. doi:10.1093/conphys/cou009

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sullam K, Essinger S, Lozupone C, O'Connor M, Rosen G, Knight R, Kilham S, Russell J (2012) Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis Mol Ecol 21:3363–3378. doi:10.1111/j.1365-294X.2012.05552.x

    Article  PubMed  Google Scholar 

  53. Colman D, Toolson E, Takacs-Vesbach C (2012) Do diet and taxonomy influence insect gut bacterial communities? Mol Ecol 21:5124–5137. doi:10.1111/j.1365-294X.2012.05752.x

    Article  CAS  PubMed  Google Scholar 

  54. Xiang Z-F, Liang W-B, Nie S-G, Li M (2012) Diet and feeding behavior of Rhinopithecus brelichi at Yangaoping, Guizhou Am J Primatol 74:551–560

    Article  PubMed  Google Scholar 

  55. Bleisch WV, Jiahua X (1998) Ecology and behavior of the Guizhou snub-nosed langur (Rhinopithecus [Rhinopithecus] brelichi), with a discussion of socioecology in the genus. In: Jablonski NG (ed) The natural history of the doucs and snub-nosed monkeys. World Scientific Publishing, Singapore,

    Google Scholar 

  56. Guo S, Li B, Watanabe K (2007) Diet and activity budget of Rhinopithecus roxellana in the Qinling Mountains, China Primates 48:268–276. doi:10.1007/s10329-007-0048-z

    Article  PubMed  Google Scholar 

  57. Ding W, Zhao Q-K (2004) Rhinopithecus bieti at Tacheng, Yunnan: diet and daytime activities Int J Primatol 25:583–598. doi:10.1023/B:IJOP.0000023576.60883.e5

    Article  Google Scholar 

  58. Bennett EL, Davies AG (1994) The ecology of Asian colobines. In: Davies AG, Oates J (eds) Colobine monkeys: their ecology, behavior, and evolution. Cambridge University Press, Cambridge,

    Google Scholar 

  59. Oates J (1994) The natural history of African colobines. Cambridge University Press, Cambridge,

    Google Scholar 

  60. Yeager CP, Kool K (2000) The behavioral ecology of Asian colobines. Cambridge University Press, Cambridge,

    Book  Google Scholar 

  61. Rawson BM (2006) Activity budgets in black-shanked douc langurs (Pygathrix nigripes) Int J Primatol 27(Suppl 1) Abstract 307

  62. Duc HM, Baxter GS, Page MJ (2009) Diet of Pygathrix nigripes in southern Vietnam Int J Primatol 30:15–28. doi:10.1007/s10764-008-9325-y

    Article  Google Scholar 

  63. Lippold LK (1998) Natural history of douc langurs. In: Jablonski NG (ed) The natural history of the doucs and snub-nosed monkeys. World Scientific Publishing, Singapore,

    Google Scholar 

  64. Tinh NT, Long HT, Tuan BV, Vy TH, NA T (2012) The feeding behaviour and phytochemical food content of grey-shanked douc langurs (Pygathrix cinerea) at Kon Ka Kinh National Park, Vietnam Vietnamese J Primatol 2:25–35

    Google Scholar 

  65. Matsuda I, Tuuga A, Higashi S (2009) The feeding ecology and activity budget of proboscis monkeys Am J Primatol 71:478–492. doi:10.1002/ajp.20677

    Article  PubMed  Google Scholar 

  66. Raven PH, Evert RF, Eichhorn SE (2005) Biology of plants. W.H. Freeman & Company, New York,

    Google Scholar 

  67. McKey D (1974) Adaptive patterns in alkaloid physiology Am Nat 108:305–320

    Article  Google Scholar 

  68. Hladik CM (1978) Adaptive strategies of primates in relation to leaf eating. Smithsonian Institution Press, Washington,

    Google Scholar 

  69. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL (2016) Diet-induced extinction in the gut microbiota compounds over generations Nature 529:212–215. doi:10.1038/nature16504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Matsuda I, Sha JCM, Ortmann S, Schwarm A, Grandl F, Caton J, Jens W, Kreuzer M, Marlena D, Hagen KB, Clauss M (2015) Excretion patterns of solute and different-sized particle passage markers in foregut-fermenting proboscis monkey (Nasalis larvatus) do not indicate an adaptation for rumination Physiol Behav 149:45–52. doi:10.1016/j.physbeh.2015.05.020

    Article  CAS  PubMed  Google Scholar 

  71. Matsuda I, Tuuga A, Hashimoto C, Bernard H, Yamagiwa J, Fritz J, Tsubokawa K, Yayota M, Murai T, Iwata Y, Clauss M (2014) Faecal particle size in free-ranging primates supports a ‘rumination’ strategy in the proboscis monkey (Nasalis larvatus) Oecologia 174:1127–1137. doi:10.1007/s00442-013-2863-9

    Article  PubMed  Google Scholar 

  72. Russell JB, Rychlik JL (2001) Factors that alter rumen microbial ecology Science 292:1119–1122. doi:10.1126/science.1058830

    Article  CAS  PubMed  Google Scholar 

  73. Ley RE, Turnbaugh P, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity Nature 444:1022–1023. doi:10.1038/4441022a

    Article  CAS  PubMed  Google Scholar 

  74. Willing B, Voros A, Roos S, Jones C, Jansson A, Lindberg JE (2009) Changes in faecal bacteria associated with concentrate and forage-only diets fed to horses in training Equine Vet J 41:908914. doi:10.2746/042516409x447806

    Article  Google Scholar 

  75. Mackie R, Aminov R, Hu W, Klieve A, Ouwerkerk D, Sundset M, Kamagata Y (2003) Ecology of uncultivated Oscillospira species in the rumen of cattle, sheep, and reindeer as assessed by microscopy and molecular approaches Appl Environ Microbiol 69:6808–6815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Clarke R (1979) Niche in pasture-fed ruminants for the large rumen bacteria Oscillospira, Lampropedia, and Quin's and Eadie's ovals Appl Environ Microbiol 37:654–657

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, Wilson BA, Nelson KE, White BA, Garber PA (2015) The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra) Microb Ecol 69:434–443. doi:10.1007/s00248-014-0554-7

    Article  CAS  PubMed  Google Scholar 

  78. Biddle A, Stewart L, Blanchard J, Leschine S (2013) Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities Diversity 5:627–640. doi:10.3390/d5030627

    Article  Google Scholar 

  79. Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS, Henderson C, Flint HJ (2000) Phylogenetic relationships of butyrate-producing bacteria from the human gut Appl Environ Microbiol 66:1654–1661. doi:10.1128/aem.66.4.1654-1661.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Velazquez OC, Lederer HM, Rombeau JL (1997) Butyrate and the colonocyte: production, absorption, metabolism, and therapeutic implications. In: Kritchevsky D, Bonfield C (eds) Dietary fiber in health and disease. Plenum Press Div Plenum Publishing Corp, New York, pp. 123–134

    Chapter  Google Scholar 

  81. Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, Bultman SJ (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon Cell Metab 13:517–526. doi:10.1016/j.cmet.2011.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Brahe LK, Astrup A, Larsen LH (2013) Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes Rev 14:950–959. doi:10.1111/obr.12068

    Article  CAS  PubMed  Google Scholar 

  83. Hong J, Jia Y, Pan S, Jia L, Li H, Han Z, Cai D, Zhao R (2016) Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice Oncotarget 7:56071–56082. doi:10.18632/oncotarget.11267

    Article  PubMed  PubMed Central  Google Scholar 

  84. Frank D, St Amand A, Feldman R, Boedeker E, Harpaz N, Pace N (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases Proc Natl Acad Sci U S A 104:13780–13785. doi:10.1073/pnas.0706625104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fujimoto T, Imaeda H, Takahashi K, Kasumi E, Bamba S, Fujiyama Y, Andoh A (2013) Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn's disease J Gastroenterol Hepatol 28:613–619. doi:10.1111/jgh.12073

    Article  CAS  PubMed  Google Scholar 

  86. Stewart C-B, Disotell TR (1998) Primate evolution—in and out of Africa Curr Biol 8:R582–R588. doi:10.1016/S0960-9822(07)00367-3

    Article  CAS  PubMed  Google Scholar 

  87. Russell J, Moreau C, Goldman-Huertas B, Fujiwara M, Lohman D, Pierce NE (2009) Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants Proc Natl Acad Sci U S A 106:21236–21241. doi:10.1073/pnas.0907926106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Richard D. Howard for his support of this project, thoughtful suggestions on analysis, and review of this manuscript. Krista Nichols kindly provided laboratory space for the molecular work. We also thank Bong Suk-Kim and Gaenna Rogers for their assistance in the laboratory. Finally, we thank the reviewers for the time and thought they put into providing helpful feedback on this manuscript. This project was funded by the Margot Marsh Biodiversity Foundation (VLH, CLT), San Diego Zoo Global, the Offield Family Foundation, the Earth Microbiome Project, the Howard Hughes Medical Institute (RK), Purdue College of Veterinary Medicine International Programs (VLH), and Fanjingshan National Nature Reserve. VLH was supported by a Purdue University Andrews Fellowship and a Purdue Research Foundation Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa L. Hale.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s00248-017-1070-3.

Electronic Supplementary Material

Table S1

(DOCX 91 kb)

Table S2

(DOCX 222 kb)

Table S3

(DOCX 144 kb)

Fig. S1

(DOCX 426 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hale, V.L., Tan, C.L., Niu, K. et al. Diet Versus Phylogeny: a Comparison of Gut Microbiota in Captive Colobine Monkey Species. Microb Ecol 75, 515–527 (2018). https://doi.org/10.1007/s00248-017-1041-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-1041-8

Keywords

Navigation