Skip to main content
Log in

Skin Bacterial Community Reorganization Following Metamorphosis of the Fire-Bellied Toad (Bombina orientalis)

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In organisms with complex life histories, dramatic changes in microbial community structure may occur with host development and immune system maturation. Amphibian host susceptibility to diseases such as chytridiomycosis may be affected by the reorganization of skin microbial community structure that occurs during metamorphosis. We tracked changes in the bacterial communities inhabiting skin of Korean fire-bellied toads (Bombina orientalis) that we infected as tadpoles with different strains of Batrachochytrium dendrobatidis (Bd), the pathogenic fungus that causes chytridiomycosis. We found that B. orientalis undergoes a major change in skin bacterial community composition between 5 and 15 days following metamorphosis. Richness indices and phylogenetic diversity measures began to diverge earlier, between aquatic and terrestrial stages. Our results further reveal differences in skin bacterial community composition among infection groups, suggesting that the effect of Bd infection on skin microbiome composition may differ by Bd strain. Additional studies are needed to further investigate the structural and temporal dynamics of microbiome shifts during metamorphosis in wild and captive amphibian populations. Analyses of the ontogeny of microbiome shifts may contribute to an understanding of why amphibians vary in their susceptibility to chytridiomycosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Loso T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF, Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz D, Wernegreen JJ (2013) Animals in a bacterial world, a new imperative for the life sciences Proc Natl Acad Sci USA 110:3229–3236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time Science 326:1694–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gao Z, Tseng CH, Pei Z, Blaser MJ (2007) Molecular analysis of human forearm superficial skin bacterial biota Proc Natl Acad Sci USA 104:2927–2932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rosenthal M, Goldberg D, Aiello A, Larson E, Foxman B (2011) Skin microbiota: microbial community structure and its potential association with health and disease Infect Genet Evol 11:839–848

    Article  PubMed  PubMed Central  Google Scholar 

  5. Grice EA, Segre JA (2011) The skin microbiome Nat Rev Micro 9:244–253

    Article  CAS  Google Scholar 

  6. Brown DD, Cai L (2007) Amphibian metamorphosis Dev Biol 306:20–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ellison TR, Mathisen PM, Miller L (1985) Developmental changes in keratin patterns during epidermal maturation Dev Biol 112:329–337

    Article  CAS  PubMed  Google Scholar 

  8. Marantelli G, Berger L, Speare R, Keegan L (2004) Distribution of the amphibian chytrid Batrachochytrium dendrobatidis and keratin during tadpole development Pac Conserv Biol 10:173–179

    Article  Google Scholar 

  9. Rollins-Smith LA (1998) Metamorphosis and the amphibian immune system Immunol Rev 166:221–230

    Article  CAS  PubMed  Google Scholar 

  10. Du Pasquier L, Flajnik MF (1990) Expression of MHC class II antigens during Xenopus development Dev Immunol 1:85–95

    Article  PubMed  PubMed Central  Google Scholar 

  11. Salter-Cid L, Nonaka M, Flajnik MF (1998) Expression of MHC class Ia and class Ib during ontogeny: high expression in epithelia and coregulation of class Ia and imp7 genes J Immunol 160:2853–2861

    CAS  PubMed  Google Scholar 

  12. Woodhams DC, Bell SC, Bigler L, Caprioli RM, Chaurand P, Lam BA, Reinert LK, Stalder U, Vazquez VM, Schliep K, Hertz A, Rollins-Smith LA (2016) Life history linked to immune investment in developing amphibians Conserv Physiol 4:cow025

    Article  PubMed  PubMed Central  Google Scholar 

  13. Holden WM, Reinert LK, Hanlon SM, Parris MJ, Rollins-Smith LA (2015) Development of antimicrobial peptide defenses of southern leopard frogs, Rana sphenocephala, against the pathogenic chytrid fungus, Batrachochytrium dendrobatidis Dev Comp Immunol 48:65–75

    Article  CAS  PubMed  Google Scholar 

  14. Kueneman JG, Parfrey LW, Woodhams DC, Archer HM, Knight R, McKenzie VJ (2013) The amphibian skin-associated microbiome across species, space and life history stages Mol Ecol 23:1238–1250

    Article  PubMed  Google Scholar 

  15. Kueneman JG, Woodhams DC, Van Treuren W, Archer HM, Knight R, McKenzie VJ (2015) Inhibitory bacteria reduce fungi on early life stages of endangered Colorado boreal toads (Anaxyrus boreas) ISME J 10:934–944

    Article  PubMed  PubMed Central  Google Scholar 

  16. Longo AV, Savage AE, Hewson I, Zamudio KR (2015) Seasonal and ontogenetic variation of skin microbial communities and relationships to natural disease dynamics in declining amphibians R Soc Open Sci 2:140377

    Article  PubMed  PubMed Central  Google Scholar 

  17. Becker MH, Harris RN (2010) Cutaneous bacteria of the redback salamander prevent morbidity associated with a lethal disease PLoS One 5:e10957

    Article  PubMed  PubMed Central  Google Scholar 

  18. Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CR, Flaherty DC, Lam BA, Woodhams DC, Briggs CJ, Vredenburg VT, Minbiole KPC (2009) Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus ISME J 3:818–824

    Article  CAS  PubMed  Google Scholar 

  19. Woodhams DC, Vredenburg VT, Simon M-A, Billheimer D, Shakhtour B, Shyr Y, Briggs CJ, Rollins-Smith LA, Harris RN (2007) Symbiotic bacteria contribute to innate immune defenses of the threatened mountain yellow-legged frog, Rana muscosa Biol Conserv 138:390–398

    Article  Google Scholar 

  20. Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, Slocombe R, Ragan MA, Hyatt AD, McDonald KR, Hines HB, Lips KR, Marantelli G, Parkes H (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America Proc Natl Acad Sci USA 95:9031–9036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, Hines HB, Kenyon N (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs EcoHealth 4:125–134

    Article  Google Scholar 

  22. Becker MH, Walke JB, Cikanek S, Savage AE, Mattheus N, Santiago CN, Minbiole KPC, Harris RN, Belden LK, Gratwicke B (2015) Composition of symbiotic bacteria predicts survival in Panamanian golden frogs infected with a lethal fungus Proc R Soc B 282:20142881

    Article  PubMed  PubMed Central  Google Scholar 

  23. Loudon AH, Holland JA, Umile TP, Burzynski EA, Minbiole KPC, Harris RN (2014) Interactions between amphibians symbiotic bacteria cause the production of emergent anti-fungal metabolites Front Microbiol 5:441

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rachowicz LJ, Vredenburg VT (2004) Transmission of Batrachochytrium dendrobatidis within and between amphibian life stages Dis Aquat Org 61:75–83

    Article  PubMed  Google Scholar 

  25. Tobler U, Schmidt BR (2010) Within- and among-population variation in chytridiomycosis-induced mortality in the toad Alytes obstetricans PLoS One 5:e10927

    Article  PubMed  PubMed Central  Google Scholar 

  26. Walker SF, Bosch J, Gomez V, Garner TWJ, Cunningham AA, Schmeller DS, Ninyerola M, Henk DA, Ginestet C, Arthur C-P, Fisher MC (2010) Factors driving pathogenicity vs. prevalence of amphibian panzootic chytridiomycosis in Iberia Ecol Lett 13:372–382

    Article  PubMed  Google Scholar 

  27. Jani AJ, Briggs CJ (2014) The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection Proc Natl Acad Sci USA 11:5049–5058

    Article  Google Scholar 

  28. Bataille A, Cashins SD, Grogan LF, Skerratt LF, Hunter D, McFadden M, Scheele B, Brannelly LA, Marcis A, Harlow PS, Bell S, Berger L, Waldman B (2015) Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation Proc R Soc B 282:20143127

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bai C, Liu X, Fisher MC, Garner TWJ, Li Y (2012) Global and endemic Asian lineages of the emerging pathogenic fungus Batrachochytrium dendrobatidis widely infect amphibians in China Div Distrib 18:307–318

  30. Bataille A, Fong JJ, Cha M, Wogan GOU, Baek HJ, Lee H, Min MS, Waldman B (2013) Genetic evidence for a high diversity and wide distribution of endemic strains of the pathogenic chytrid fungus Batrachochytrium dendrobatidis in wild Asian amphibians Mol Ecol 22:4196–4209

    Article  CAS  PubMed  Google Scholar 

  31. Swei A, Rowley JJL, Rodder D, Diesmos MLL, Diesmos AC, Briggs CJ, Brown R, Cao TT, Cheng TL, Chong RA, Han B, Hero J-M, Hoang HD, Kusrini MD, Le DTT, McGuire JA, Meegaskumbura M, Min M-S, Mulcahy DG, Neang T, Phimmachak S, Rao D-Q, Reeder NM, Schoville SD, Sivongxay N, Srei N, Stock M, Stuart BL, Torres LS, Tran DTA, Tunstall TS, Vieites D, Vredenburg VT (2011) Is chytridiomycosis an emerging infectious disease in Asia? PLoS One 6:e23179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Farrer RA, Weinert LA, Bielby J, Garner TWJ, Balloux F, Clare F, Bosch J, Cunningham AA, Weldon C, du Preez LH, Anderson L, Pond SLK, Shahar-Golan R, Henk DA, Fisher MC (2011) Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage Proc Natl Acad Sci USA 108:18732–18736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fisher MC, Bosch J, Yin Z, Stead DA, Walker J, Selway L, Brown AJP, Walker LA, Gow NAR, Stajich JE, Garner TWJ (2009) Proteomic and phenotypic profiling of the amphibian pathogen Batrachochytrium dendrobatidis shows that genotype is linked to virulence Mol Ecol 18:415–429

    Article  CAS  PubMed  Google Scholar 

  34. Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification Herpetologica 16:183–190

    Google Scholar 

  35. Torreilles SL, McClure DE, Green SL (2009) Evaluation and refinement of euthanasia methods for Xenopus laevis J Am Assoc Lab Anim Sci 48:512–516

    CAS  PubMed  PubMed Central  Google Scholar 

  36. McMahon TA, Rohr JR (2015) Transition of chytrid fungus infection from mouthparts to hind limbs during amphibian metamorphosis EcoHealth 12:188–193

    Article  PubMed  Google Scholar 

  37. Shin J, Bataille A, Kosch TA, Waldman B (2014) Swabbing often fails to detect amphibian chytridiomycosis under conditions of low infection load PLoS One 9:e111091

    Article  PubMed  PubMed Central  Google Scholar 

  38. Goka K, Yokoyama JUN, Une Y, Kuroki T, Suzuki K, Nakahara M, Kobayashi A, Inaba S, Mizutani T, Hyatt AD (2009) Amphibian chytridiomycosis in Japan: distribution, haplotypes and possible route of entry into Japan Mol Ecol 18:4757–4774

    Article  CAS  PubMed  Google Scholar 

  39. Hyatt AD, Boyle DG, Olsen V, Boyle DB, Berger L, Obendorf D, Dalton A, Kriger K, Heros M, Hines H, Phillott R, Campbell R, Marantelli G, Gleason F, Coiling A (2007) Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis Dis Aquat Org 73:175–192

    Article  CAS  PubMed  Google Scholar 

  40. Masella AP, Bartram AK, Truszkowki JM, Brown DG, Neufeld JD (2012) PANDAseq: paired-end assembler for illumina sequences BMC Bioinformatics 13:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schloss PD, Westcott SI, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chun J, Lee HJ, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences Int J Syst Evol Microbiol 57:2259–2261

    Article  CAS  PubMed  Google Scholar 

  43. Unterseher M, Jumpponen A, Öpik M, Tedersoo L, Moora M, Dormann CF, Schnittler M (2011) Species abundance distribution and richness estimations in fungal metagenomics—lessons learned from community ecology Mol Ecol 20:275–285

    Article  PubMed  Google Scholar 

  44. Zhou J, Wu L, Deng Y, Zhi X, Jiang Y-H, Tu Q, Xie J, Van Nostrand JD, He Z, Yang Y (2011) Reproducibility and quantitation of amplicon sequencing-based detection ISME J 5:1303–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Faith DP, Baker AM (2006) Phylogenetic diversity (PD) and biodiversity conservation: some bioinformatics challenges Evol Bioinforma 2:121–128

    Google Scholar 

  46. Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum-evolution trees with profiles instead of a distance matrix Mol Biol Evol 26:1641–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing J R Statist Soc B 57:289–300

    Google Scholar 

  48. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  49. Bataille A, Lee-Cruz L, Tripathi B, Kim H, Waldman B (2016) Microbiome diversity differs between amphibian skin regions: implications for chytridiomycosis mitigation efforts Microbiol Ecol 71:221–232

    Article  Google Scholar 

  50. Becker MH, Richards-Zawacki CL, Gratwicke B, Belden LK (2014) The effect of captivity on the cutaneous bacterial community of the critically endangered Panamanian golden frog (Atelopus zeteki) Biol Conserv 176:199–206

    Article  Google Scholar 

  51. Rollins-Smith LA, Fites JS, Reinert LK, Shiakolas AR, Umile TP, Minbiole KPC (2015) Immunomodulatory metabolites released by the frog-killing fungus, Batrachochytrium dendrobatidis Infect Immun 83:4565–4570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rollins-Smith LA, Ramsey JP, Pask JD, Reinert LK, Woodhams DC (2011) Amphibian immune defenses against chytridiomycosis: impacts of changing environments Integr Comp Biol 51:552–562

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jaehyub Shin for assistance with laboratory work. The research was supported by the National Research Foundation of Korea (NRF), and funded by the Ministry of Education (2014-063422 to A.B. and 2015R1D1A1A01057282 to B.W) and by the Ministry of Science, ICT, and Future Planning (2010-0002767 and 2012R1A1A2044449 to B.W.) of the Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Waldman.

Ethics declarations

Animal husbandry and experimental protocols were approved by the Institutional Animal Care and Use Committee (SNU-140827-2) and the Institutional Biosafety Committee (SNUIBC-P120725-2-1) of Seoul National University. Fieldwork was conducted under a permit issued by the mayor’s office, Chuncheon, Gangwon Province. The study species is not threatened or legally protected in South Korea.

Electronic supplementary material

ESM 1

(DOCX 1004 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bataille, A., Lee-Cruz, L., Tripathi, B. et al. Skin Bacterial Community Reorganization Following Metamorphosis of the Fire-Bellied Toad (Bombina orientalis). Microb Ecol 75, 505–514 (2018). https://doi.org/10.1007/s00248-017-1034-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-1034-7

Keywords

Navigation