Skip to main content
Log in

Influence of Host Plant on Thaumetopoea pityocampa Gut Bacterial Community

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Microbial communities associated to the gut of insects are attracting an increasing interest, mainly because of their role in influencing several host life-traits. The characterization of the gut microbial community is pivotal for understanding insect ecology and, thus, to develop novel pest management strategies. The pine processionary moth, Thaumetopoea pytiocampa (Denis & Schiff.) (Lepidoptera: Thaumetopoeidae), is a severe defoliator of pine forests, able to feed on several pine species. In this work, we performed a metabarcoding analysis to investigate, for the first time, the diversity of the gut bacterial community of pine processionary larvae associated with three different host pine species (Pinus halepensis, Pinus nigra subsp. laricio, and Pinus pinaster). We found that the gut microbial community of T. pityocampa larvae collected on P. halapensis was different from that associated with larvae collected from P. nigra and P. pinaster. Moreover, the high presence of bacteria belonging to the genera Modestobacter, Delftia, and unidentified Methylobacteriaceae retrieved in larvae feeding on P. halapensis suggested that specific interactions can occur. Our results provide the evidence that different host plant differently impact on the microbiota diversity of T. pityocampa larvae, contributing to the general knowledge of this pest with information that could be useful in shaping the next generation of pest control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Prosser JI (2015) Dispersing misconceptions and identifying opportunities for the use of ‘omics’ in soil microbial ecology Nat Rev Micro 13:439–446. doi:10.1038/nrmicro3468

    Article  CAS  Google Scholar 

  2. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority Proc. Natl. Acad. Sci. U. S. A. 95:6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dillon R, Dillon V (2004) The gut bacteria of insects: nonpathogenic interactions Annual Reviews in Entomology 49:71–92

    Article  CAS  Google Scholar 

  4. Goldman-Huertas B, Mitchell RF, Lapoint RT, Faucher CP, Hildebrand JG, Whiteman NK (2015) Evolution of herbivory in Drosophilidae linked to loss of behaviors, antennal responses, odorant receptors, and ancestral diet Proc. Natl. Acad. Sci. U. S. A. 112:3026–3031. doi:10.1073/pnas.1424656112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Frago E, Dicke M, Godfray HCJ (2012) Insect symbionts as hidden players in insect–plant interactions Trends Ecol. Evol. 27:705–711. doi:10.1016/j.tree.2012.08.013

    Article  PubMed  Google Scholar 

  6. Brady CM, White JA (2013) Cowpea aphid (Aphis craccivora) associated with different host plants has different facultative endosymbionts Ecol Entomol 38:433–437. doi:10.1111/een.12020

    Article  Google Scholar 

  7. Biere A, Bennett AE (2013) Three-way interactions between plants, microbes and insects Funct. Ecol. 27:567–573. doi:10.1111/1365-2435.12100

    Article  Google Scholar 

  8. Feldhaar H (2011) Bacterial symbionts as mediators of ecologically important traits of insect hosts Ecol Entomol 36:533–543. doi:10.1111/j.1365-2311.2011.01318.x

    Article  Google Scholar 

  9. Colman DR, Toolson EC, Takacs-Vesbach CD (2012) Do diet and taxonomy influence insect gut bacterial communities? Mol. Ecol. 21:5124–5137. doi:10.1111/j.1365-294X.2012.05752.x

    Article  CAS  PubMed  Google Scholar 

  10. Abrahamson WG, Weis AE (1997) Evolutionary ecology across three trophic levels: goldenrods, gallmakers, and natural enemies. Princeton University Press

  11. Berlocher SH, Feder JL (2002) Sympatric speciation in phytophagous insects: moving beyond controversy? Annu. Rev. Entomol. 47:773–815

    Article  CAS  PubMed  Google Scholar 

  12. Drès M, Mallet J (2002) Host races in plant–feeding insects and their importance in sympatric speciation Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 357:471–492

    Article  Google Scholar 

  13. Jaenike J (1981) Criteria for ascertaining the existence of host races Am. Nat. 117:830–834

    Article  Google Scholar 

  14. Wojciechowska M, Stepnowski P, Gołębiowski M (2016) The use of insecticides to control insect pests Invertebr. Surviv. J. 13:210–220

    Google Scholar 

  15. EPPO (2004) Thaumetopoea pityocampa- PM7/37 Bulletin OEPP/EPPO Bulletin 34:295–298

    Article  Google Scholar 

  16. Jactel H, Barbaro L, Battisti A, Bosc A, Branco M, Brockerhoff E, Castagneyrol B, Dulaurent A-M, Hódar JA, Jacquet J-S (2015) Insect–tree interactions in Thaumetopoea pityocampa. Processionary moths and climate change: an update. Springer, pp. 265–310

  17. Masutti L, Battisti A (1990) Thaumetopoea pityocampa (Den. & Schiff.) in Italy bionomics and perspectives of integrated control J. Appl. Entomol. 110:229–234

    Article  Google Scholar 

  18. Avolio S, Bernardini V, Clerici E, Tomaiuolo M (2012) Management guidelines for calabrian pine reforestations carried out in southern Italy in the 1950s-70s J Life Sci 6:1050

    Google Scholar 

  19. Campolo O, Malacrinò A, Grande SB, Chiera E, Palmeri V (2015) Efficacy of selected insecticides for the control of the california red scale in southern Italy Acta Hort 1065:1149–1156

    Article  Google Scholar 

  20. Campolo O, Palmeri V, Malacrinò A, Laudani F, Castracani C, Mori A, Grasso DA (2015) Interaction between ants and the Mediterranean fruit fly: new insights for biological control Biol. Control 90:120–127

    Article  Google Scholar 

  21. Malacrinò A, Campolo O, Laudani F, Palmeri V (2016) Fumigant and repellent activity of limonene enantiomers against Tribolium confusum du Val Neotropical Entomol 45:597–603

    Article  Google Scholar 

  22. Malacrinò A, Schena L, Campolo O, Laudani F, Palmeri V (2015) Molecular analysis of the fungal microbiome associated with the olive fruit fly Bactrocera oleae Fungal Ecol. 18:67–74. doi:10.1016/j.funeco.2015.08.006

    Article  Google Scholar 

  23. Rubin BE, Sanders JG, Hampton-Marcell J, Owens SM, Gilbert JA, Moreau CS (2014) DNA extraction protocols cause differences in 16S rRNA amplicon sequencing efficiency but not in community profile composition or structure MicrobiologyOpen 3:910–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study J. Bacteriol. 173:697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Y, Qian P-Y (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies PLoS One 4:e7401

    Article  PubMed  PubMed Central  Google Scholar 

  26. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms ISME J 6:1621–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci 108(Supplement 1):4516–4522

  28. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi Proc. Natl. Acad. Sci. U. S. A. 109:6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End reAd mergeR Bioinformatics 30:614–620

    Article  CAS  PubMed  Google Scholar 

  30. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data Nat. Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Online: http://www.r-project.org/.

  32. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biol. 15:550

    Article  PubMed  PubMed Central  Google Scholar 

  33. McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8: e61217.

  34. Oksanen J, Blanchet F, Kindt R, Legendre P, Minchin P, O’Hara R, Simpson G, Solymos P, Stevens M, Wagner H (2013) Package “vegan”: community ecology. R package version: 2.0–7

  35. Guidolin AS, Cônsoli FL (2017) Symbiont diversity of Aphis (Toxoptera) citricidus (Hemiptera: Aphididae) as influenced by host plants Microb. Ecol. 73:201–210

    Article  PubMed  Google Scholar 

  36. Ferrari J, West JA, Via S, Godfray HCJ (2012) Population genetic structure and secondary symbionts in host-associated populations of the pea aphid complex Evolution 66:375–390

    Article  PubMed  Google Scholar 

  37. Ferrari J, Vavre F (2011) Bacterial symbionts in insects or the story of communities affecting communities Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 366:1389–1400

    Article  Google Scholar 

  38. Kikuchi Y, Hosokawa T, Fukatsu T (2007) Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation Appl. Environ. Microbiol. 73:4308–4316. doi:10.1128/aem.00067-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hosokawa T, Kikuchi Y, Shimada M, Fukatsu T (2007) Obligate symbiont involved in pest status of host insect Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 274:1979–1984. doi:10.1098/rspb.2007.0620

    Article  CAS  Google Scholar 

  40. Malacrinò A, Schena L, Campolo O, Laudani F, Mosca S, Giunti G, Strano CP, Palmeri V (2017) A metabarcoding survey on the fungal microbiota associated to the olive fruit fly Microb. Ecol. 73:677–684. doi:10.1007/s00248-016-0864-z

    Article  PubMed  Google Scholar 

  41. Malacrinò A, Rassati D, Schena L, Mehzabin R, Battisti A, Palmeri V (2017) Fungal communities associated with bark and ambrosia beetles trapped at international harbours Fungal Ecol. 28:44–52. doi:10.1016/j.funeco.2017.04.007

    Article  Google Scholar 

  42. Crotti E, Balloi A, Hamdi C, Sansonno L, Marzorati M, Gonella E, Favia G, Cherif A, Bandi C, Alma A, Daffonchio D (2012) Microbial symbionts: a resource for the management of insect-related problems Microb. Biotechnol. 5:307–317. doi:10.1111/j.1751-7915.2011.00312.x

    Article  PubMed  PubMed Central  Google Scholar 

  43. Andongma AA, Wan L, Dong Y-C, Li P, Desneux N, White JA, Niu C-Y (2015) Pyrosequencing reveals a shift in symbiotic bacteria populations across life stages of Bactrocera dorsalis Sci Rep 5:9470. doi:10.1038/srep09470

    Article  PubMed  PubMed Central  Google Scholar 

  44. Palmeri V, Pulvirenti A, Zappalà L (2005) La processionaria dei pini nei boschi della dorsale appenninica della Calabria Forest@-Journal of Silviculture and Forest Ecology 2:345

    Article  Google Scholar 

  45. Berasategui A, Axelsson K, Nordlander G, Schmidt A, Borg-Karlson A-K, Gershenzon J, Terenius O, Kaltenpoth M (2016) The gut microbiota of the pine weevil is similar across Europe and resembles that of other conifer-feeding beetles Mol. Ecol. 25:4014–4031. doi:10.1111/mec.13702

    Article  CAS  PubMed  Google Scholar 

  46. Gayatri Priya N, Ojha A, Kajla MK, Raj A, Rajagopal R (2012) Host plant induced variation in gut bacteria of Helicoverpa armigera PLoS One 7:e30768. doi:10.1371/journal.pone.0030768

    Article  PubMed Central  Google Scholar 

  47. Sudakaran S, Salem H, Kost C, Kaltenpoth M (2012) Geographical and ecological stability of the symbiotic mid-gut microbiota in European firebugs, Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae) Mol. Ecol. 21:6134–6151. doi:10.1111/mec.12027

    Article  CAS  PubMed  Google Scholar 

  48. Engel P, Moran NA (2013) The gut microbiota of insects–diversity in structure and function FEMS Microbiol. Rev. 37:699–735

    Article  CAS  PubMed  Google Scholar 

  49. Broderick NA, Raffa KF, Goodman RM, Handelsman J (2004) Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods Appl. Environ. Microbiol. 70:293–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Macchioni F, Cioni P, Flamini G, Morelli I, Maccioni S, Ansaldi M (2003) Chemical composition of essential oils from needles, branches and cones of Pinus pinea, P. halepensis, P. pinaster and P. nigra from central ltaly Flavour Fragrance J 18:139–143

    Article  CAS  Google Scholar 

  51. Hansen AK, Moran NA (2014) The impact of microbial symbionts on host plant utilization by herbivorous insects Mol. Ecol. 23:1473–1496. doi:10.1111/mec.12421

    Article  PubMed  Google Scholar 

  52. Yun J-H, Roh SW, Whon TW, Jung M-J, Kim M-S, Park D-S, Yoon C, Nam Y-D, Kim Y-J, Choi J-H, Kim J-Y, Shin N-R, Kim S-H, Lee W-J, Bae J-W (2014) Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host Appl. Environ. Microbiol. 80:5254–5264. doi:10.1128/aem.01226-14

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mohr KI, Tebbe CC (2006) Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field Environ. Microbiol. 8:258–272. doi:10.1111/j.1462-2920.2005.00893.x

    Article  CAS  PubMed  Google Scholar 

  54. Pidiyar VJ, Jangid K, Patole MS, Shouche YS (2004) Studies on cultured and uncultured microbiota of wild Culex quinquefasciatus mosquito midgut based on 16s ribosomal RNA gene analysis. Am J Trop Med Hyg 70:597–603. doi:10.4269/ajtmh.2004.70.597

  55. Morales-Jiménez J, Zúñiga G, Villa-Tanaca L, Hernández-Rodríguez C (2009) Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae) Microb. Ecol. 58:879–891. doi:10.1007/s00248-009-9548-2

    Article  PubMed  Google Scholar 

  56. Prabhakar CS, Sood P, Kanwar SS, Sharma PN, Kumar A, Mehta PK (2013) Isolation and characterization of gut bacteria of fruit fly, Bactrocera tau (Walker) Phytoparasitica 41:193–201. doi:10.1007/s12600-012-0278-5

    Article  Google Scholar 

  57. Whitaker MRL, Salzman S, Sanders J, Kaltenpoth M, Pierce NE (2016) Microbial communities of lycaenid butterflies do not correlate with larval diet Front. Microbiol. 7:1920. doi:10.3389/fmicb.2016.01920

    Article  PubMed  PubMed Central  Google Scholar 

  58. Paramasiva I, Shouche Y, Kulkarni GJ, Krishnayya PV, Akbar SM, Sharma HC (2014) Diversity in gut microflora of Helicoverpa armigera populations from different regions in relation to biological activity of Bacillus thuringiensis δ-endotoxin Cry1Ac Arch. Insect Biochem. Physiol. 87:201–213. doi:10.1002/arch.21190

    Article  CAS  PubMed  Google Scholar 

  59. Wang Y, Gilbreath III TM, Kukutla P, Yan G, Xu J (2011) Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya PLoS One 6:e24767. doi:10.1371/journal.pone.0024767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Russell JA, Moreau CS, Goldman-Huertas B, Fujiwara M, Lohman DJ, Pierce NE (2009) Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants Proc. Natl. Acad. Sci. U. S. A. 106:21236–21241. doi:10.1073/pnas.0907926106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Salem H, Kreutzer E, Sudakaran S, Kaltenpoth M (2013) Actinobacteria as essential symbionts in firebugs and cotton stainers (Hemiptera, Pyrrhocoridae) Environ. Microbiol. 15:1956–1968. doi:10.1111/1462-2920.12001

    Article  PubMed  Google Scholar 

  62. Kaltenpoth M (2009) Actinobacteria as mutualists: general healthcare for insects? Trends Microbiol. 17:529–535. doi:10.1016/j.tim.2009.09.006

    Article  CAS  PubMed  Google Scholar 

  63. Normand P (2006) Geodermatophilaceae fam. nov., a formal description Int. J. Syst. Evol. Microbiol. 56:2277–2278

    Article  CAS  PubMed  Google Scholar 

  64. Urzì C, Salamone P, Schumann P, Rohde M, Stackebrandt E (2004) Blastococcus saxobsidens sp. nov., and emended descriptions of the genus Blastococcus Ahrens and Moll 1970 and Blastococcus aggregatus Ahrens and Moll 1970 Int. J. Syst. Evol. Microbiol. 54:253–259

    Article  PubMed  Google Scholar 

  65. Luedemann GM (1968) Geodermatophilus, a new genus of the Dermatophilaceae (Actinomycetales) J. Bacteriol. 96:1848–1858

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Reddy GS, Potrafka RM, Garcia-Pichel F (2007) Modestobacter versicolor sp. nov., an actinobacterium from biological soil crusts that produces melanins under oligotrophy, with emended descriptions of the genus Modestobacter and Modestobacter multiseptatus Mevs et al. 2000 Int. J. Syst. Evol. Microbiol. 57:2014–2020

    Article  CAS  PubMed  Google Scholar 

  67. Fuentes D, Disante KB, Valdecantos A, Cortina J, Vallejo VR (2007) Response of Pinus halepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean forest soils Environ. Pollut. 145:316–323

    Article  CAS  PubMed  Google Scholar 

  68. Indiragandhi P, Yoon C, Yang JO, Cho S, Sa TM, Kim GH (2010) Microbial communities in the developmental stages of B and Q biotypes of sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) J. Korean Soc. Appl. Biol. Chem. 53:605–617. doi:10.3839/jksabc.2010.093

    Article  CAS  Google Scholar 

  69. Montagna M, Gómez-Zurita J, Giorgi A, Epis S, Lozzia G, Bandi C (2015) Metamicrobiomics in herbivore beetles of the genus Cryptocephalus (Chrysomelidae): toward the understanding of ecological determinants in insect symbiosis Insect Sci 22:340–352

    Article  PubMed  Google Scholar 

  70. Hosokawa T, Ishii Y, Nikoh N, Fujie M, Satoh N, Fukatsu T (2016) Obligate bacterial mutualists evolving from environmental bacteria in natural insect populations Nat Microbiol 1:15011. doi:10.1038/nmicrobiol.2015.11

    Article  CAS  PubMed  Google Scholar 

  71. Medina RF, Nachappa P, Tamborindeguy C (2011) Differences in bacterial diversity of host-associated populations of Phylloxera notabilis Pergande (Hemiptera: Phylloxeridae) in pecan and water hickory J. Evol. Biol. 24:761–771. doi:10.1111/j.1420-9101.2010.02215.x

    Article  CAS  PubMed  Google Scholar 

  72. Shin SC, Kim S-H, You H, Kim B, Kim AC, Lee K-A, Yoon J-H, Ryu J-H, Lee W-J (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling Science 334:670–674. doi:10.1126/science.1212782

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Analyses were carried out using instruments acquired with the support of PON SAF@MED (PON a3_00016) and PON PON03PE_00090_1-2-3 (PON Ricerca e competitività 2007–2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Palmeri.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Fig. S1

(PDF 47 kb)

Fig. S2

(PDF 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strano, C.P., Malacrinò, A., Campolo, O. et al. Influence of Host Plant on Thaumetopoea pityocampa Gut Bacterial Community. Microb Ecol 75, 487–494 (2018). https://doi.org/10.1007/s00248-017-1019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-1019-6

Keywords

Navigation