Skip to main content

Advertisement

Log in

Patterns of Arbuscular Mycorrhizal Fungal Distribution on Mainland and Island Sandy Coastal Plain Ecosystems in Brazil

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Although sandy coastal plains are important buffer zones to protect the coast line and maintain biological diversity and ecosystem services, these ecosystems have been endangered by anthropogenic activities. Thus, information on coastal biodiversity and forces shaping coastal biological diversity are extremely important for effective conservation strategies. In this study, we aimed to compare arbuscular mycorrhizal (AM) fungal communities from soil samples collected on the mainland and nearby islands located in Brazilian sandy coastal plain ecosystems (Restingas) to get information about AM fungal biogeography and identify factors shaping these communities. Soil samples were collected in 2013 and 2014 on the beachfront of the tropical sandy coastal plain at six sites (three island and three mainland locations) across the northeast, southeast, and south regions of Brazil. Overall, we recorded 53 AM fungal species from field and trap culture samples. The richness and diversity of AM fungal species did not differ between mainland and island locations, but AM fungal community assemblages were different between mainland and island environments and among most sites sampled. Glomeromycota communities registered from island samples showed higher heterogeneity than communities from mainland samples. Sandy coastal plains harbor diverse AM fungal communities structured by climatic, edaphic, and spatial factors, while the distance from the colonizing source (mainland environments) does not strongly affect the AM fungal communities in Brazilian coastal environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amaral ACZ, Corte GN, Rosa Filho JS, et al (2016) Brazilian sandy beaches: characteristics, ecosystem services, impacts, knowledge and priorities. Brazilian J Oceanogr 64:5–16. doi:10.1590/S1679-875920160933064sp2

    Article  Google Scholar 

  2. Maun MA (2009) The biology of coastal sand dunes. Oxford University Press, Oxford

    Google Scholar 

  3. Smith SE, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  4. van der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11:296–310. doi:10.1111/j.1461-0248.2007.01139.x

    Article  PubMed  Google Scholar 

  5. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol. 171:41–53. doi:10.1111/j.1469-8137.2006.01750.x

    Article  CAS  PubMed  Google Scholar 

  6. de Assis DMA, Oehl F, Gonçalves CM, et al (2016) Community structure of arbuscular mycorrhizal fungi in fluvial and maritime dunes of Brazilian Northeast. Appl. Soil Ecol. 108:136–146. doi:10.1016/j.apsoil.2016.07.018

    Article  Google Scholar 

  7. da Silva DKA, de Souza RG, de Velez BA A, et al (2015) Communities of arbuscular mycorrhizal fungi on a vegetation gradient in tropical coastal dunes. Appl. Soil Ecol. 96:7–17. doi:10.1016/j.apsoil.2015.06.009

    Article  Google Scholar 

  8. Kawahara A, Ezawa T (2013) Characterization of arbuscular mycorrhizal fungal communities with respect to zonal vegetation in a coastal dune ecosystem. Oecologia 173:533–543. doi:10.1007/s00442-013-2622-y

    Article  PubMed  Google Scholar 

  9. Bahram M, Peay KG, Tedersoo L (2015) Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytol. 205:1454–1463. doi:10.1111/nph.13206

    Article  CAS  PubMed  Google Scholar 

  10. Xu T, Veresoglou SD, Chen Y, et al (2016) Plant community, geographic distance and abiotic factors play different roles in predicting AMF biogeography at the regional scale in northern China. Environ. Microbiol. Rep.:2–27. doi:10.1111/1758-2229.12485

  11. Sanders IR, Rodriguez A (2016) Aligning molecular studies of mycorrhizal fungal diversity with ecologically important levels of diversity in ecosystems. ISME J 10:2780–2786. doi:10.1038/ismej.2016.73

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mangan SA, Eom AH, Adler GH, et al (2004) Diversity of arbuscular mycorrhizal fungi across a fragmented forest in Panama: insular spore communities differ from mainland communities. Oecologia 141:687–700. doi:10.1007/s00442-004-1684-2

    Article  PubMed  Google Scholar 

  13. Grilli G, Urcelay C, Galetto L (2012) Forest fragment size and nutrient availability: complex responses of mycorrhizal fungi in native-exotic hosts. Plant Ecol. 213:155–165. doi:10.1007/s11258-011-9966-3

    Article  Google Scholar 

  14. Vannette RL, Leopold DR, Fukami T (2016) Forest area and connectivity influence root-associated fungal communities in a fragmented landscape. Ecology 97:2374–2383. doi:10.1002/ecy.1472

    Article  PubMed  Google Scholar 

  15. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  16. David AS, Seabloom EW, May G (2016) Plant host species and geographic distance affect the structure of aboveground fungal symbiont communities, and environmental filtering affects belowground communities in a coastal dune ecosystem. Microb. Ecol. 71:912–926. doi:10.1007/s00248-015-0712-6

    Article  PubMed  Google Scholar 

  17. Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF (2015) Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc. Natl. Acad. Sci. U. S. A. 112:1326–1332. doi:10.1073/pnas.1414261112

    Article  Google Scholar 

  18. Davison J, Moora M, Öpik M, et al (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–973. doi:10.1126/science.aab1161

    Article  CAS  PubMed  Google Scholar 

  19. Baas-Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. WP Van Stockum and Zoon, The Hague

    Google Scholar 

  20. Martiny JBH, Bohannan BJM, Brown JH, et al (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev 4:102–112. doi:10.1038/nrmicro1341

    CAS  Google Scholar 

  21. Pereira HM, Leadley PW, Proença V, et al (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501. doi:10.1126/science.1196624

    Article  CAS  PubMed  Google Scholar 

  22. Penttilä R, Lindgren M, Miettinen O, et al (2006) Consequences of forest fragmentation for polyporous fungi at two spatial scales. Oikos 114:225–240. doi:10.1111/j.2006.0030-1299.14349.x

    Article  Google Scholar 

  23. Janos DP (1980) Mycorrhizae influence tropical succession. Biotropica 12:56–64. doi:10.2307/2388157

    Article  Google Scholar 

  24. Goto BT, Maia LC (2006) Glomerospores: a new denomination for the spores of Glomeromycota, a group molecularly distinct from the Zygomycota. Mycotaxon 96:129–132

    Google Scholar 

  25. da Silva IR, da Silva DKA, de Souza FA, et al (2017) Changes in arbuscular mycorrhizal fungal communities along a river delta island in northeastern Brazil. Acta Oecol. 79:8–17. doi:10.1016/j.actao.2016.12.011

    Article  Google Scholar 

  26. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. California Agricultural Experimental Station, Berkeley

    Google Scholar 

  27. Jarstfer AG, Sylvia DM (2002) Isolation, culture, and detection of arbuscular mycorrhizal fungi. In: Florida Agricultural Experiment Station Journal Series no. R-07306:535–542

    Google Scholar 

  28. Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 46:235–244. doi:10.1016/S0007-1536(63)80079-0

    Article  Google Scholar 

  29. Jenkins WR (1964) A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis. Rep. 48:692

    Google Scholar 

  30. Błaszkowski J (2012) Glomeromycota. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków

    Google Scholar 

  31. Oehl F, Sieverding E, Palenzuela J, et al (2011) Advances in Glomeromycota taxonomy and classification. IMA Fungus 2:191–199. doi:10.5598/imafungus.2011.02.02.10

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Illinois

    Google Scholar 

  33. Magurran AE (2004) Measuring biological diversity. Blackwell, Oxford

    Google Scholar 

  34. Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67:345–366. doi:10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2

    Google Scholar 

  35. de Cáceres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos 119:1674–1684. doi:10.1111/j.1600-0706.2010.18334.x

    Article  Google Scholar 

  36. Moora M, Davison J, Öpik M, et al (2014) Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities. FEMS Microbiol. Ecol. 90:609–621. doi:10.1111/1574-6941.12420

    Article  CAS  PubMed  Google Scholar 

  37. de Mendiburu, F (2013) Statistical procedures for agricultural research. Package “Agricolae” Version 1.4–4. Comprehensive R archive network, Institute for Statistics and Mathematics, Vienna. http://cran.r-project.org/web/packages/agricolae/agricolae.pdf

  38. Clarke KR, Gorley RN (2006) PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth

    Google Scholar 

  39. McCune B, Mefford MJ (2011) PC-ORD. Multivariate Analysis of Ecological Data. Version 6. MjM Software, Gleneden Beach, Oregon

  40. Oksanen J, Blanchet F, Kindt R, et al. (2015) Vegan: community ecology package. R package v.2.2–1. [WWW document] URL http://CRAN.R-project.org/package=vegan

  41. Douds DD, Millner PD (1999) Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agric. Ecosyst. Environ. 74:77–93. doi:10.1016/S0167-8809(99)00031-6

    Article  Google Scholar 

  42. Landis FC, Gargas A, Givnish TJ (2004) Relationships among arbuscular mycorrhizal fungi, vascular plants and environmental conditions in oak savannas. New Phytol. 164:493–504. doi:10.1111/j.1469-8137.2004.01202.x

    Article  Google Scholar 

  43. Wetzel K, Silva G, Matczinski U, et al (2014) Superior differentiation of arbuscular mycorrhizal fungal communities from till and no-till plots by morphological spore identification when compared to T-RFLP. Soil Biol. Biochem. 72:88–96. doi:10.1016/j.soilbio.2014.01.033

    Article  CAS  Google Scholar 

  44. Wilde P, Manal A, Stodden M, et al (2009) Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environ. Microbiol. 11:1548–1561. doi:10.1111/j.1462-2920.2009.01882.x

    Article  PubMed  Google Scholar 

  45. da Silva IR, de Mello CMA, Ferreira Neto RA, et al (2014) Diversity of arbuscular mycorrhizal fungi along an environmental gradient in the Brazilian semiarid. Appl. Soil Ecol. 84:166–175. doi:10.1016/j.apsoil.2014.07.008

    Article  Google Scholar 

  46. Jansa J, Erb A, Oberholzer HR, et al (2014) Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol. Ecol. 23:2118–2135. doi:10.1111/mec.12706

    Article  CAS  PubMed  Google Scholar 

  47. Oehl F, Laczko E, Bogenrieder A, et al (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol. Biochem. 42:724–738. doi:10.1016/j.soilbio.2010.01.006

    Article  CAS  Google Scholar 

  48. de Carvalho F, de Souza FA, Carrenho R, et al (2012) The mosaic of habitats in the high-altitude Brazilian rupestrian fields is a hotspot for arbuscular mycorrhizal fungi. Appl. Soil Ecol. 52:9–19. doi:10.1016/j.apsoil.2011.10.001

    Article  Google Scholar 

  49. Vasconcellos RLF, Bonfim JA, Baretta D, Cardoso EJBN (2013) Arbuscular mycorrhizal fungi and glomalin-related soil protein as potential indicators of soil quality in a recuperation gradient of the Atlantic Forest in Brazil. L Degrad Dev 27:325–334. doi:10.1002/ldr.2228

    Article  Google Scholar 

  50. Allen MF, Hipps LE, Wooldridge GL (1989) Wind dispersal and subsequent establishment of VA mycorrhizal fungi across a successional arid landscape. Landsc. Ecol. 2:165–171. doi:10.1007/BF00126016

    Article  Google Scholar 

  51. Harinikumar KM, Bagyaraj DJ (1994) Potential of earthworms, ants, millipedes, and termites for dissemination of vesicular-arbuscular mycorrhizal fungi in soil. Biol. Fertil. Soils 18:115–118. doi:10.1007/BF00336456

    Article  Google Scholar 

  52. Koehler H, Munderloh E, Hofmann S, Sybilla H (1995) Soil microarthropods (Acari, Collembola) from beach and dune: characteristics and ecosystem context. J. Coast. Conserv. 1:77–86. doi:10.1007/BF02835564

    Article  Google Scholar 

  53. Koske RE, Gemma JN (1990) VA mycorrhizae in strand vegetation of Hawaii: evidence for long-distance codispersal of plants and fungi. Am. J. Bot. 77:466. doi:10.2307/2444380

    Article  Google Scholar 

  54. Mangan SA, Adler GH (2002) Seasonal dispersal of arbuscular mycorrhizal fungi by spiny rats in a neotropical forest. Oecologia 131:587–597. doi:10.1007/s00442-002-0907-7

    Article  PubMed  Google Scholar 

  55. Koske R, Bonin C, Kelly J, Martinez C (1996) Effects of sea water on spore germination of a sand-dune-inhabiting arbuscular mycorrhizal fungus. Mycologia 88:947–950. doi:10.2307/3761057

    Article  Google Scholar 

  56. Bever JD, Schultz PA, Pringle A, Morton JB (2001) Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. Bioscience 51:923–932. doi:10.1641/0006-3568(2001)051

    Article  Google Scholar 

  57. Hempel S, Renker C, Buscot F (2007) Differences in the species composition of arbuscular mycorrhizal fungi in spore, root and soil communities in a grassland ecosystem. Environ. Microbiol. 9:1930–1938. doi:10.1111/j.1462-2920.2007.01309.x

    Article  CAS  PubMed  Google Scholar 

  58. Redecker D, Hijri I, Wiemken A (2003) Molecular identification of arbuscular mycorrhizal fungi in roots: perspectives and problems. Folia Geobot 38:113–124. doi:10.1007/BF02803144

    Article  Google Scholar 

  59. Sanders IR (2004) Plant and arbuscular mycorrhizal fungal diversity - are we looking at the relevant levels of diversity and are we using the right techniques? New Phytol. 164:415–418. doi:10.1111/j.1469-8137.2004.01208.x

    Article  Google Scholar 

  60. Błaszkowski J, Czerniawska B (2011) Arbuscular mycorrhizal fungi (Glomeromycota) associated with roots of Ammophila arenaria growing in maritime dunes of Bornholm (Denmark). Acta Soc. Bot. Pol. 80:63–76

    Article  Google Scholar 

  61. do Mergulhão AC ES, do Figueiredo M V, Burity HA, Maia LC (2009) Hospedeiros e ciclos sucessivos de multiplicação afetam a detecção de fungos micorrízicos arbusculares em áreas impactadas por mineração gesseira. Árvore 33:227–236

    Article  Google Scholar 

  62. Clapp JP, Helgason T, Daniell TJ, et al (2002) Genetic studies of the structure and diversity of arbuscular mycorrhizal fungal communities. In: van der Heijden MGA, Sanders I (eds) Micorrhizal Ecology. Springer, Berlin Heidelberg, pp. 201–224

    Google Scholar 

  63. Bartz MLC, Carrenho R, Gomes-da-Costa SM, et al (2008) Comparação entre as técnicas de amostragem direta em campo e cultura-armadilha para mensuração da diversidade de espécies de fungos micorrízicos arbusculares. Hoehnea 35:159–164

    Article  Google Scholar 

  64. Trejo-aguilar D, Lara-capistrán L, Maldonado-mendoza IE, et al (2013) Loss of arbuscular mycorrhizal fungal diversity in trap cultures during long-term subculturing. IMA Fungus 4:161–167. doi:10.5598/imafungus.2013.04.02.01

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ohsowski BM, Zaitsoff PD, Öpik M, Hart MM (2014) Where the wild things are: looking for uncultured Glomeromycota. New Phytol. 204:171–179. doi:10.1111/nph.12894

    Article  PubMed  Google Scholar 

  66. da Silva DKA, Coutinho FP, Escobar IEC, et al (2015) The community of arbuscular mycorrhizal fungi in natural and revegetated coastal areas (Atlantic Forest) in northeastern Brazil. Biodivers. Conserv. 24:2213–2226. doi:10.1007/s10531-015-0968-7

    Article  Google Scholar 

  67. de Souza RG, da Silva DK, de Mello CMA, et al (2013) Arbuscular mycorrhizal fungi in revegetated mined dunes. L Degrad Dev 24:147–155. doi:10.1002/ldr.1113

    Article  Google Scholar 

  68. Jobim K, Silva IR, Assis DMA, et al (2016) Arbuscular mycorrhizae in coastal areas. Recent Advances Mycorrhizal Fungi. Springer, In, pp. 117–142

    Google Scholar 

  69. Jobim K, Goto BT (2016) Diversity of arbuscular mycorrhizal fungi (Glomeromycota) in maritime sand dunes of Brazilian northeast. Stud Fungi 1:43–55. doi:10.5943/sif/1/1/3

    Google Scholar 

  70. Koske RE, Gemma JN (1997) Mycorrhizae and succession in plantings of beachgrass in sand dunes. Am. J. Bot. 84:118–130. doi:10.2307/2445889

    Article  Google Scholar 

  71. Pereira CMR, Goto BT, da Silva DKA, et al (2015) Acaulospora reducta sp. nov. and A. excavata—two glomeromycotan fungi with pitted spores from Brazil. Mycotaxon 130:983–995. doi:10.5248/130.983

    Article  Google Scholar 

  72. Trufem SFB, Malatinszky SMM, Otomo HS (1994) Fungos micorrízicos arbusculares em rizosferas de plantas do litoral arenosodo Parque Estadual da Ilha do Cardoso, SP, Brasil. Acta Bot Brasilica 8:219–229

    Article  Google Scholar 

  73. Lekberg Y, Koide RT, Rohr JR, et al (2007) Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J. Ecol. 95:95–105. doi:10.1111/j.1365-2745.2006.01193.x

    Article  Google Scholar 

  74. Chagnon PL, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci. 18:484–491. doi:10.1016/j.tplants.2013.05.001

    Article  CAS  PubMed  Google Scholar 

  75. de León DG, Moora M, Öpik M, et al (2016) Dispersal of arbuscular mycorrhizal fungi and plants during succession. Acta Oecol. 77:128–135. doi:10.1016/j.actao.2016.10.006

    Article  Google Scholar 

  76. Nielsen KB, Kjøller R, Bruun HH, et al (2016) Colonization of new land by arbuscular mycorrhizal fungi. Fungal Ecol. 20:22–29. doi:10.1016/j.funeco.2015.10.004

    Article  Google Scholar 

  77. Kivlin SN, Winston GC, Goulden ML, Treseder KK (2014) Environmental filtering affects soil fungal community composition more than dispersal limitation at regional scales. Fungal Ecol. 12:14–25. doi:10.1016/j.funeco.2014.04.004

    Article  Google Scholar 

  78. Cornwell WK, Schwilk DW, Ackerly DD (2006) A trait-based test for habitat filtering: convex hull volume. Ecology 87:1465–1471. doi:10.1890/0012-9658(2006)87

    Article  PubMed  Google Scholar 

  79. Davison J, Moora M, Jairus T, et al (2016) Hierarchical assembly rules in arbuscular mycorrhizal (AM) fungal communities. Soil Biol. Biochem. 97:63–70. doi:10.1016/j.soilbio.2016.03.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for providing a PhD scholarship to I.R. Silva, fellowship and research grants (Sisbiota Proc. 563342/2010-2, Universal Proc. 446.144/2014-2, and PQ Proc. 302.416/2010-2) to L.C. Maia and a Visiting Professor grant to F. Oehl (Proc. 491.912/2013-2). The authors also acknowledge a postdoctoral fellowship given to D.K.A. Silva by CNPq and Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE). The authors are indebted to Reginaldo Alves Ferreira Neto, Camilla Maciel Rabelo Pereira, and Maria Beatriz Barbosa de Barros Barreto for help during the field trips and collections. We are also indebt to Dr. Dorothy Araújo for helping with the plant species identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iolanda Ramalho da Silva.

Electronic supplementary material

ESM 1

(DOCX 32 kb)

Online Resource 2

Accumulation curves for observed and estimated AM fungal species richness, based on Chao 1, on the mainland and islands from field samples (TIFF 218 kb)

Online Resource 3

Accumulation curves for observed and estimated AM fungal species richness, based on Chao 1, on the mainland and islands from trap culture samples (TIFF 43 kb)

Online Resource 4

Venn diagram showing numbers of AM fungal species unique and shared between field and trap culture soil samples (TIFF 23 kb)

ESM 5

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, I.R., de Souza, F.A., da Silva, D.K.A. et al. Patterns of Arbuscular Mycorrhizal Fungal Distribution on Mainland and Island Sandy Coastal Plain Ecosystems in Brazil. Microb Ecol 74, 654–669 (2017). https://doi.org/10.1007/s00248-017-0979-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-0979-x

Keywords

Navigation