Skip to main content
Log in

Relative Abundance and Strain Diversity in the Bacterial Endosymbiont Community of a Sap-Feeding Insect Across Its Native and Introduced Geographic Range

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Most insects are associated with bacterial symbionts. The bacterial diversity and community composition within hosts may play an important role in shaping insect population biology, ecology and evolution. We focussed on the bacterial microbiome of the Australian fig homotomid Mycopsylla fici (Hemiptera: Psylloidea), which can cause defoliation of its only host tree, Ficus macrophylla. This sap-feeding insect is native to mainland Australia and Lord Howe Island (LHI) but also occurs where its host has been planted, notably in New Zealand. By using a high-throughput 16S rDNA amplicon sequencing approach, we compared the bacterial diversity and community composition in individual adult males of four host populations, Sydney, Brisbane, LHI and Auckland. We also compared males, females and nymphs of the Sydney population. The microbiome of M. fici was simple and consisted mostly of the following three maternally inherited endosymbiont species: the primary endosymbiont Carsonella, a secondary (S-) endosymbiont and Wolbachia. However, the relative abundance of their sequence reads varied between host populations, except for similarities between Sydney and Auckland. In addition, insects from Sydney and Auckland had identical bacterial strains supporting the hypothesis that Sydney is the source population for Auckland. In contrast, mainland and LHI populations harboured the same S-endosymbiont, co-diverged Carsonella but different Wolbachia strains. Besides detecting endosymbiont-specific patterns of either co-evolution or horizontal acquisition, our study highlights that relative abundance of maternally inherited endosymbionts should also be taken into account when studying bacterial communities across host populations, as variations in bacterial density may impact host biology and ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Buchner P (1953) Endosymbiose der Tiere mit pflanzlichen Mikroorganismen. Verlag Birkhauser, Basel

    Book  Google Scholar 

  2. Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42:165–190. doi:10.1146/annurev.genet.41.110306.130119

    Article  CAS  PubMed  Google Scholar 

  3. Morrow JL, Frommer M, Shearman DCA, Riegler M (2014) Tropical tephritid fruit fly community with high incidence of shared Wolbachia strains as platform for horizontal transmission of endosymbionts. Environ. Microbiol. 16:3622–3637. doi:10.1111/1462-2920.12382/abstract

    Article  CAS  PubMed  Google Scholar 

  4. Morrow JL, Frommer M, Shearman DCA, Riegler M (2015) The microbiome of field-caught and laboratory-adapted Australian tephritid fruit fly species with different host plant use and specialisation. Microb. Ecol. 70:498–508. doi:10.1007/s00248-015-0571-1

    Article  CAS  PubMed  Google Scholar 

  5. Douglas AE (2009) The microbial dimension in insect nutritional ecology. Funct. Ecol. 23:38–47. doi:10.1111/j.1365-2435.2008.01442.x

    Article  Google Scholar 

  6. Sloan DB, Moran NA (2012) Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids. Mol. Biol. Evol. 29:3781–3792. doi:10.1093/molbev/mss180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Douglas AE (2006) Phloem-sap feeding by animals: problems and solutions. J. Exp. Bot. 57:747–754. doi:10.1093/jxb/erj067

    Article  CAS  PubMed  Google Scholar 

  8. Shigenobu S, Watanabe H, Hattori M, et al (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407:81–86. doi:10.1038/35024074

    Article  CAS  PubMed  Google Scholar 

  9. Shigenobu S, Wilson ACC (2011) Genomic revelations of a mutualism: the pea aphid and its obligate bacterial symbiont. Cell. Mol. Life Sci. 68:1297–1309. doi:10.1007/s00018-011-0645-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tamames J, Gil R, Latorre A, et al (2007) The frontier between cell and organelle: genome analysis of Candidatus Carsonella ruddii. BMC Evol. Biol. 7:181. doi:10.1186/1471-2148-7-181

    Article  PubMed  PubMed Central  Google Scholar 

  11. Baumann P (2005) Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 59:155–189. doi:10.1146/annurev.micro.59.030804.121041

    Article  CAS  PubMed  Google Scholar 

  12. Oliver KM, Noge K, Huang EM, et al (2012) Parasitic wasp responses to symbiont-based defense in aphids. BMC Biol. 10:11. doi:10.1186/1741-7007-10-11

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dunbar HE, Wilson ACC, Ferguson NR, Moran NA (2007) Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biol. 5:e96. doi:10.1371/journal.pbio.0050096

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lukasik P, van Asch M, Guo H, et al (2012) Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol. Lett. 16:214–218. doi:10.1111/ele.12031

    Article  PubMed  Google Scholar 

  15. Gueguen G, Vavre F, Gnankine O, et al (2010) Endosymbiont metacommunities, mtDNA diversity and the evolution of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex. Mol. Ecol. 19:4365–4378. doi:10.1111/j.1365-294X.2010.04775.x

    Article  PubMed  Google Scholar 

  16. Hansen AK, Jeong G, Paine TD, Stouthamer R (2007) Frequency of secondary symbiont infection in an invasive psyllid relates to parasitism pressure on a geographic scale in California. Appl. Environ. Microbiol. 73:7531–7535. doi:10.1128/AEM.01672-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gauthier J-P, Outreman Y, Mieuzet L, Simon J-C (2015) Bacterial communities associated with host-adapted populations of pea aphids revealed by deep sequencing of 16S ribosomal DNA. PLoS One 10:e0120664. doi:10.1371/journal.pone.0120664

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tsuchida T, Koga R, Shibao H, et al (2002) Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum. Mol. Ecol. 11:2123–2135

    Article  CAS  PubMed  Google Scholar 

  19. Smith CCR, Snowberg LK, Caporaso GJ, et al (2015) Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME J 9: 2515-2526. doi:10.1038/ismej.2015.64

  20. Hoffmann M, Coy MR, Kingdom Gibbard HN, Pelz-Stelinzki KS (2014) Wolbachia infection density in populations of the Asian citrus psyllid (Hemiptera: Liviidae). Environ. Entomol. 43:1215–1222

    Article  CAS  PubMed  Google Scholar 

  21. Bansal R, Mian MAR, Michel AP (2014) Microbiome diversity of Aphis glycines with extensive superinfection in native and invasive populations. Environ. Microbiol. Rep. 6:57–69. doi:10.1111/1758-2229.12108

    Article  CAS  PubMed  Google Scholar 

  22. Hall AAG, Morrow JL, Fromont C, et al (2016) Codivergence of the primary bacterial endosymbiont of psyllids versus host switches and replacement of their secondary bacterial endosymbionts. Environ. Microbiol. 18:2591–2603

    Article  CAS  PubMed  Google Scholar 

  23. Dossi FCA, da Silva EP, Cônsoli FL (2014) Population dynamics and growth rates of endosymbionts during Diaphorina citri (Hemiptera, Liviidae) ontogeny. Microb. Ecol. 68:881–889. doi:10.1007/s00248-014-0463-9

    Article  PubMed  Google Scholar 

  24. Fromont C, Riegler M, Cook JM (2016) Phylogeographic analyses of bacterial endosymbionts in fig homotomids (Hemiptera: Psylloidea) reveal codiversification of both primary and secondary endosymbionts. FEMS Microbiol. Ecol. 92:fiw205. doi:10.1093/femsec/fiw205

    Article  PubMed  Google Scholar 

  25. Aksoy E, Telleria EL, Echodu R, et al (2014) Analysis of multiple tsetse fly populations in Uganda reveals limited diversity and species-specific gut microbiota. Appl. Environ. Microbiol. 80:4301–4312. doi:10.1128/AEM.00079-14

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jing X, Wong AC-N, Chaston JM, et al (2014) The bacterial communities in plant phloem-sap-feeding insects. Mol. Ecol. 23:1433–1444. doi:10.1111/mec.12637

    Article  CAS  PubMed  Google Scholar 

  27. Capinha C, Essl F, Seebens H, et al (2015) The dispersal of alien species redefines biogeography in the Anthropocene. Science 348:1248–1251

    Article  CAS  PubMed  Google Scholar 

  28. Zouache K, Voronin D, Tran-Van V, Mavingui P (2009) Composition of bacterial communities associated with natural and laboratory populations of Asobara tabida infected with Wolbachia. Appl. Environ. Microbiol. 75:3755–3764. doi:10.1128/AEM.02964-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nguyen DT, Spooner-Hart RN, Riegler M (2016) Loss of Wolbachia but not Cardinium in the invasive range of the Australian thrips species, Pezothrips kellyanus. Biol. Invasions 18:197–214. doi:10.1007/s10530-015-1002-4

    Article  Google Scholar 

  30. Newman AKL (2004) The biology of Mycopsylla fici Tryon on its sole host, Ficus macrophylla Desf. Ex Pers. Macquarie University, Sydney

    Google Scholar 

  31. Bain J (2004) New records. For Heal News 142:1–2

    Google Scholar 

  32. Herlemann DPR, Labrenz M, Jürgens K, et al (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571–1579. doi:10.1038/ismej.2011.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schloss PD, Westcott SL, Ryabin T, et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75:7537–7541. doi:10.1128/AEM.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kozich JJ, Westcott SL, Baxter NT, et al (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq illumina sequencing platform. Appl. Environ. Microbiol. 79:5112–5120. doi:10.1128/AEM.01043-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pruesse E, Quast C, Knittel K, et al (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35:7188–7196. doi:10.1093/nar/gkm864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Edgar RC, Haas BJ, Clemente JC, et al (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi:10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tamura K, Stecher G, Peterson D, et al (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ronquist F, Teslenko M, van der Mark P, et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61:539–542. doi:10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  39. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29:1969–1973. doi:10.1093/molbev/mss075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57:289–300

    Google Scholar 

  41. Team RDC (2014) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  42. De Mendiburu F (2014) Agricolae: statistical procedures for agricultural research. R package version 1.2-4. http://CRAN.R-project.org/package=agricolae

  43. Oksanen J, Blanchet G, Kindt R, et al (2015) Vegan: community ecology package. R package version 2:3–1 http://CRAN.R-project.org/package=vegan

    Google Scholar 

  44. Warnes GR, Bolker B, Bonebakker L, et al (2015) gplots: various R programming tools for plotting data. R package version 2.17.0. http://CRAN.R-project.org/package=gplots.

  45. Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. doi:10.1093/bioinformatics/btn129

    Article  CAS  PubMed  Google Scholar 

  46. Fromont C, DeGabriel JL, Riegler M, Cook JM (2017) Diversity and specificity of sap-feeding herbivores and their parasitoids on Australian fig trees. Insect Conserv Divers 70:107–119

    Article  Google Scholar 

  47. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi:10.1093/bioinformatics/btg180

    Article  CAS  PubMed  Google Scholar 

  48. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  49. Overholt WA, Diaz R, Rosskopf E, et al (2015) Deep characterization of the microbiomes of Calophya spp. (Hemiptera: Calophyidae) gall-inducing psyllids reveals the absence of plant pathogenic bacteria and three dominant endosymbionts. PLoS One 10:e0132248. doi:10.1371/journal.pone.0132248

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nakabachi A, Yamashita A, Toh H, et al (2006) The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314:267

    Article  CAS  PubMed  Google Scholar 

  51. McCutcheon JP, Von Dohlen CD (2011) An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Curr. Biol. 21:1366–1372. doi:10.1016/j.cub.2011.06.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zug R, Hammerstein P (2012) Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One 7:e38544. doi:10.1371/journal.pone.0038544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Weinert LA, Araujo-Jnr EV, Ahmed MZ, Welch JJ (2015) The incidence of bacterial endosymbionts in terrestrial arthropods. Proc. R. Soc. B Biol. Sci. 282:20150249. doi:10.1098/rspb.2015.0249

    Article  Google Scholar 

  54. Hosokawa T, Koga R, Kikuchi Y, et al (2010) Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl. Acad. Sci. 107:769–774. doi:10.1073/pnas.0911476107

    Article  CAS  PubMed  Google Scholar 

  55. Andersen SB, Boye M, Nash DR, Boomsma JJ (2012) Dynamic Wolbachia prevalence in Acromyrmex leaf-cutting ants: potential for a nutritional symbiosis. J. Evol. Biol. 25:1340–1350. doi:10.1111/j.1420-9101.2012.02521.x

    Article  CAS  PubMed  Google Scholar 

  56. Riegler M, Stauffer C (2002) Infections and superinfections in cytoplasmically incompatible populations of the European cherry fruit fly. Mol. Ecol. 11:2425–2434

    Article  CAS  PubMed  Google Scholar 

  57. Schuler H, Köppler K, Daxböck-Horvath S, et al (2016) The hitchhiker’s guide to Europe: the infection dynamics of an ongoing Wolbachia invasion and mitochondrial selective sweep in Rhagoletis cerasi. Mol. Ecol. 25:1595–1609. doi:10.1111/mec.13571

    Article  PubMed  PubMed Central  Google Scholar 

  58. Clark EL, Daniell TJ, Wishart J, et al (2012) How conserved are the bacterial communities associated with aphids? A detailed assessment of the Brevicoryne brassicae (Hemiptera: Aphididae) using 16S rDNA. Environ. Entomol. 41:1386–1397. doi:10.1603/EN12152

    Article  CAS  PubMed  Google Scholar 

  59. XiaoFang M, XueChao Z, HaiJun X (2012) The endosymbiotic microbiota of two geographical populations of the Asian citrus psyllid, Diaphorina citri, in China and its ability of pathogen transmission. Acta Entomol. Sin. 55:1149–1153

    Google Scholar 

  60. Vicente CSL, Nascimento FX, Espada M, et al (2013) Characterization of bacterial communities associated with the pine sawyer beetle Monochamus galloprovincialis, the insect vector of the pinewood nematode Bursaphelenchus xylophilus. FEMS Microbiol. Lett. 347:130–139. doi:10.1111/1574-6968.12232

    CAS  PubMed  Google Scholar 

  61. Gendrin M, Christophides GK (2013) The anopheles mosquito microbiota and their impact on pathogen transmission. In: Anopheles mosquitoes - New insights into Malar. vectors. pp 525–548

  62. Davidson EW, Rosell RC, Hendrix DL (2000) Culturable bacteria associated with the whitefly, Bemisia argentifolii (Homoptera: Aleyrodidae). Florida Entomol 82:159–171

    Article  Google Scholar 

  63. Grenier A-M, Nardon C, Rahbé Y (1994) Observations on the micro-organisms occurring in the gut of the pea aphid Acyrthosiphon pisum. Entomol Exp Appl 70:91–96. doi:10.1007/BF02380635

    Article  Google Scholar 

  64. Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu. Rev. Entomol. 49:71–92. doi:10.1146/annurev.ento.49.061802.123416

    Article  CAS  PubMed  Google Scholar 

  65. Yun J, Roh W, Whon W, et al (2014) Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80:5254–5264. doi:10.1128/AEM.01226-14

    Article  PubMed  PubMed Central  Google Scholar 

  66. Minard G, Tran F-H, Dubost A, et al (2014) Pyrosequencing 16S rRNA genes of bacteria associated with wild tiger mosquito Aedes albopictus: a pilot study. Front. Cell. Infect. Microbiol. doi:10.3389/fcimb.2014.00059

    PubMed  PubMed Central  Google Scholar 

  67. Zheng L, Crippen TL, Singh B, et al (2013) A survey of bacterial diversity from successive life stages of black soldier fly (Diptera: Stratiomyidae) by using 16S rDNA pyrosequencing. J. Med. Entomol. 50:647–658

    Article  CAS  PubMed  Google Scholar 

  68. Thao ML, Clark MA, Baumann L, et al (2000) Secondary endosymbionts of psyllids have been acquired multiple times. Curr. Microbiol. 41:300–304. doi:10.1007/s002840010138

    Article  CAS  PubMed  Google Scholar 

  69. Thao ML, Moran NA, Abbot P, et al (2000) Cospeciation of psyllids and their primary prokaryotic endosymbionts. Appl. Environ. Microbiol. 66:2898–2905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wernegreen JJ (2002) Genome evolution in bacterial endosymbionts of insects. Nat Rev Genet 3:850–861. doi:10.1038/nrg931

    Article  CAS  PubMed  Google Scholar 

  71. Fromont C, Rymer PD, Riegler M, Cook JM (submitted) Hop, step and jump—natural and anthropogenic dispersal of a host-specific insect to habitat and oceanic islands.

  72. McDougall I, Embleton BJJ, Stone DB (1981) Origin and evolution of Lord Howe Island, Southwest Pacific Ocean. J. Geol. Soc. Aust. 28:155–176. doi:10.1080/00167618108729154

    Article  CAS  Google Scholar 

  73. Stireman III JO, Nason JD, Heard SB (2005) Host-associated genetic differentiation in phytophagous insects: general phenomenon or isolated exceptions? Evidence from a goldenrod-insect community. Evolution 59:2573–2587. doi:10.1111/j.0014-3820.2005.tb00970.x

    Article  CAS  PubMed  Google Scholar 

  74. Cook JM, Butcher RDJ (1999) The transmission and effects of Wolbachia bacteria in parasitoids. Res Popul Ecol (Kyoto) 41:15–28. doi:10.1007/PL00011978

    Article  Google Scholar 

  75. Heath BD, Butcher RD, Whitfield WG, Hubbard SF (1999) Horizontal transfer of Wolbachia between phylogenetically distant insect species by a naturally occurring mechanism. Curr. Biol. 9:313–326

    Article  CAS  PubMed  Google Scholar 

  76. Amend AS, Seifert KA, Bruns TD (2010) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol. Ecol. 19:5555–5565. doi:10.1111/j.1365-294X.2010.04898.x

    Article  CAS  PubMed  Google Scholar 

  77. Fagen JR, Giongo A, Brown CT, et al (2012) Characterization of the relative abundance of the citrus pathogen Ca. Liberibacter asiaticus in the microbiome of its insect vector, Diaphorina citri, using high throughput 16S rRNA sequencing. Open Microbiol J 6:29–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pinto AJ, Raskin L (2012) PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets. PLoS One 7:e43093. doi:10.1371/journal.pone.0043093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chandler JA, Lang J, Bhatnagar S, et al (2011) Bacterial communities of diverse Drosophila species: ecological context of a host-microbe model system. PLoS Genet. 7:e1002272. doi:10.1371/journal.pgen.1002272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ikeda T, Ishikawa H, Sasaki T (2003) Regulation of Wolbachia density in the Mediterranean flour moth, Ephestia kuehniella, and the almond moth, Cadra cautella. Zool. Sci. 20:153–157. doi:10.2108/zsj.20.153

    Article  PubMed  Google Scholar 

  81. Mouton L, Henri H, Bouletreau M, Vavre F (2006) Effect of temperature on Wolbachia density and impact on cytoplasmic incompatibility. Parasitology 132:49–56. doi:10.1017/S0031182005008723

    Article  CAS  PubMed  Google Scholar 

  82. Mouton L, Henri H, Bouletreau M, Vavre F (2003) Strain-specific regulation of intracellular Wolbachia density in multiply infected insects. Mol. Ecol. 12:3459–3465. doi:10.1046/j.1365-294X.2003.02015.x

    Article  CAS  PubMed  Google Scholar 

  83. Kondo N, Shimada M, Fukatsu T (2005) Infection density of Wolbachia endosymbiont affected by co-infection and host genotype. Biol. Lett. 1:488–491. doi:10.1098/rsbl.2005.0340

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mouton L, Henri H, Charif D, et al (2007) Interaction between host genotype and environmental conditions affects bacterial density in Wolbachia symbiosis. Biol. Lett. 3:210–213. doi:10.1098/rsbl.2006.0590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Anbutsu H, Goto S, Fukatsu T (2008) High and low temperatures differently affect infection density and vertical transmission of male-killing Spiroplasma symbionts in Drosophila hosts. Appl. Environ. Microbiol. 74:6053–6059. doi:10.1128/AEM.01503-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Su Q, Xie W, Wang S, et al (2014) Location of symbionts in the whitefly Bemisia tabaci affects their densities during host development and environmental stress. PLoS One 9:e91802. doi:10.1371/journal.pone.0091802

    Article  PubMed  PubMed Central  Google Scholar 

  87. Thomas MB, Blanford S (2003) Thermal biology in insect-parasite interactions. Trends Ecol. Evol. 18:344–350. doi:10.1016/S0169-5347(03)00069-7

    Article  Google Scholar 

Download references

Acknowledgements

CF was supported by a Hawkesbury Institute for the Environment Postgraduate Research Award. This research was also supported by a research grant of the Hermon Slade Foundation (HSF 12/10) to MR and JMC. We want to thank Tim Sutton, Desi Quintans, Aidan Hall, Jane DeGabriel, Courtney Campany and John Early for helping with the field collections as well as the Lord Howe Island Board and NSW Office of Environment and Heritage for the permission to collect specimens. We also want to thank Caroline Janitz, Emma Hackett and Jocelyn King from the Next-Generation Sequencing Facility at Western Sydney University for the 16S metagenomic sequencing services and advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Fromont.

Electronic supplementary material

ESM 1

(DOCX 15 kb)

ESM 2

(DOCX 17 kb)

ESM 3

(DOCX 14 kb)

ESM 4

(DOCX 1334 kb)

ESM 5

(DOCX 2171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fromont, C., Riegler, M. & Cook, J.M. Relative Abundance and Strain Diversity in the Bacterial Endosymbiont Community of a Sap-Feeding Insect Across Its Native and Introduced Geographic Range. Microb Ecol 74, 722–734 (2017). https://doi.org/10.1007/s00248-017-0971-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-0971-5

Keywords

Navigation