Skip to main content
Log in

Ecophysiological Response on Dehydration and Temperature in Terrestrial Klebsormidium (Streptophyta) Isolated from Biological Soil Crusts in Central European Grasslands and Forests

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The green algal genus Klebsormidium (Klebsormidiophyceae, Streptophyta) is a typical member of biological soil crusts (BSCs) worldwide. Ecophysiological studies focused so far on individual strains and thus gave only limited insight on the plasticity of this genus. In the present study, 21 Klebsormidium strains (K. dissectum, K. flaccidum, K. nitens, K. subtile) from temperate BSCs in Central European grassland and forest sites were investigated. Photosynthetic performance under desiccation and temperature stress was measured under identical controlled conditions. Photosynthesis decreased during desiccation within 335–505 min. After controlled rehydration, most isolates recovered, but with large variances between single strains and species. However, all K. dissectum strains had high recovery rates (>69%). All 21 Klebsormidium isolates exhibited the capability to grow under a wide temperature range. Except one strain, all others grew at 8.5 °C and four strains were even able to grow at 6.2 °C. Twenty out of 21 Klebsormidium isolates revealed an optimum growth temperature >17 °C, indicating psychrotrophic features. Growth rates at optimal temperatures varied between strains from 0.26 to 0.77 μ day−1. Integrating phylogeny and ecophysiological traits, we found no phylogenetic signal in the traits investigated. However, multivariate statistical analysis indicated an influence of the recovery rate and growth rate. The results demonstrate a high infraspecific and interspecific physiological plasticity, and thus wide ecophysiological ability to cope with strong environmental gradients. This might be the reason why members of the genus Klebsormidium successfully colonize terrestrial habitats worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rindi F, Guiry MD, López-Bautista JM (2008) Distribution, morphology, and phylogeny of Klebsormidium (Klebsomidiales, Charophyceae) in urban environments in Europe. J. Phycol. 44(6):1529–1540. doi:10.1111/j.1529-8817.2008.00593.x

    Article  PubMed  Google Scholar 

  2. Neustupa J, Škaloud P (2010) Diversity of subaerial algae and cyanobacteria growing on bark and wood in the lowland tropical forests of Singapore. Plant. Ecology and Evolution 143(1):51–62. doi:10.5091/plecevo.2010.417

    Article  Google Scholar 

  3. Lokhorst GM (1996) Comparative taxonomic studies on the genus Klebsormidium (Charophyceae) in Europe. Cryptogamic Studies, Gustav Fischer, Stuttgart

  4. Hoffmann L (1989) Algae of terrestrial habitats. Bot. Rev. 55(2):77–105

    Article  Google Scholar 

  5. Broady PA (1996) Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodivers. Conserv. 5(11):1307–1335

    Article  Google Scholar 

  6. Ettl H, Gärtner G (1995) Syllabus der Boden-, Luft- und Flechtenalgen. Spektrum Akademischer Verlag, Stuttgart

  7. Rindi F, Guiry MD (2004) Composition and spatial variability of terrestrial algal assemblages occurring at the bases of urban walls in Europe. Phycologia 43(3):225–235. doi:10.2216/i0031-8884-43-3-225.1

    Article  Google Scholar 

  8. Baldwin NA, Whitton BA (1992) Cyanobacteria and eukaryotic algae in sports turf and amenity grasslands: a review. J. Appl. Phycol. 4(1):39–47. doi:10.1007/BF00003959

    Article  Google Scholar 

  9. Lukešová A (2001) Soil algae in brown coal and lignite post-mining areas in Central Europe (Czech Republic and Germany). Restor. Ecol. 9(4):341–350. doi:10.1046/j.1526-100X.2001.94002.x

    Article  Google Scholar 

  10. Lukešová A, Komárek J (1987) Succession of soil algae on dumps from strip coal-mining in the Most region (Czechoslovakia). Folia Geobot. Phytotax. 22(4):355–362. doi:10.1007/BF02853232

    Article  Google Scholar 

  11. Schulz K, Mikhailyuk T, Dreßler M, et al. (2016) Biological soil crusts from coastal dunes at the Baltic Sea: cyanobacterial and algal biodiversity and related soil properties. Microb. Ecol. 71(1):178–193. doi:10.1007/s00248-015-0691-7

    Article  CAS  PubMed  Google Scholar 

  12. Langhans TM, Storm C, Schwabe A (2009) Community assembly of biological soil crusts of different successional stages in a temperate sand ecosystem, as assessed by direct determination and enrichment techniques. Microb. Ecol. 58(2):394–407. doi:10.1007/s00248-009-9532-x

    Article  PubMed  Google Scholar 

  13. Mikhailyuk T, Glaser K, Holzinger A, et al. (2015) Biodiversity of Klebsormidium (Streptophyta) from alpine biological soil crusts (Alps, Tyrol, Austria, and Italy). J. Phycol. 51(4):750–767. doi:10.1111/jpy.12316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Büdel B (2001) Synopsis: comparative biogeography of soil-crust biota. In: Belnap J, Lange O (eds) Biological soil crust: structure, function, and management. Springer, Berlin Heidelberg, pp. 141–152

    Chapter  Google Scholar 

  15. Belnap J, Lange OL (2001) Biological soil crusts: structure, function, and management. Ecological studies, vol 1. Springer-Verlag, Berlin, Heidelberg

  16. Lange OL, Kidron GJ et al (1992) Taxonomic composition and photosynthetic characteristics of the ‘Biological Soil Crusts’ covering sand dunes in the Western Negev Desert. Funct Ecol 6(5):519–527

  17. Eldridge D, Bowker M, Maestre F, et al. (2010) Interactive effects of three ecosystem engineers on infiltration in a semi-arid Mediterranean grassland. Ecosystems 13(4):499–510. doi:10.1007/s10021-010-9335-4

    Article  Google Scholar 

  18. Eldridge DJ, Greene RSB (1994) Assessment of sediment yield by splash erosion on a semi-arid soil with varying cryptogam cover. J. Arid Environ. 26(3):221–232. doi:10.1006/jare.1994.1025

    Article  Google Scholar 

  19. Holzinger A, Karsten U (2013) Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms. Front. Plant Sci. 4:327. doi:10.3389/fpls.2013.00327

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kitzing C, Proeschold T, Karsten U (2014) UV-induced effects on growth, photosynthetic performance and sunscreen contents in different populations of the green alga Klebsormidium fluitans (Streptophyta) from alpine soil crusts. Microb. Ecol. 67(2):327–340. doi:10.1007/s00248-013-0317-x

    Article  CAS  PubMed  Google Scholar 

  21. Karsten U, Rindi F (2010) Ecophysiological performance of an urban strain of the aeroterrestrial green alga Klebsormidium sp. (Klebsormidiales, Klebsormidiophyceae). Eur. J. Phycol. 45(4):426–435. doi:10.1080/09670262.2010.498587

    Article  CAS  Google Scholar 

  22. Elster J, Degma P, Kováčik Ľ, et al. (2008) Freezing and desiccation injury resistance in the filamentous green alga Klebsormidium from the Antarctic, Arctic and Slovakia. Biologia 63(6):839–847. doi:10.2478/s11756-008-0111-2

    Article  Google Scholar 

  23. Kaplan F, Lewis L, Wastian J, et al. (2012) Plasmolysis effects and osmotic potential of two phylogenetically distinct alpine strains of Klebsormidium (Streptophyta). Protoplasma 249(3):789–804. doi:10.1007/s00709-011-0324-z

    Article  PubMed  Google Scholar 

  24. Sala OE, Stuart Chapin III F, et al. (2000) Global biodiversity scenarios for the year 2100. Science 287(5459):1770–1774. doi:10.1126/science.287.5459.1770

    Article  CAS  PubMed  Google Scholar 

  25. Rindi F, Mikhailyuk TI, Sluiman HJ, et al. (2011) Phylogenetic relationships in Interfilum and Klebsormidium (Klebsormidiophyceae, Streptophyta). Mol. Phylogenet. Evol. 58(2):218–231. doi:10.1016/j.ympev.2010.11.030

    Article  PubMed  Google Scholar 

  26. Mikhailyuk TI, Sluiman HJ, Massalski A, et al. (2008) New streptophyte green algae from terrestrial habitats and an new streptophyte green algae from terrestrial habitats and an assessment of the genus Interfilum (Klebsormidiophyceae, Streptophyta). J. Phycol. 44(6):1586–1603. doi:10.1111/j.1529-8817.2008.00606.x

    Article  PubMed  Google Scholar 

  27. Škaloud P, Lukesová A, Malavasi V, et al. (2014) Molecular evidence for the polyphyletic origin of low pH adaptation in the genus Klebsormidium (Klebsormidiophyceae, Streptophyta). Plant. Ecology and Evolution 147(3):333–345. doi:10.5091/plecevo.2014.989

    Article  Google Scholar 

  28. Glaser K, Donner A, Albrecht M, et al. (2016) Habitat-specific composition of morphotypes with low genetic diversity in the green algal genus Klebsormidium (Streptophyta) isolated from biological soil crusts in Central European grasslands and forests. Eur. J. Phycol. doi:10.1080/09670262.2016.1235730

    Google Scholar 

  29. Ryšánek D, Holzinger A, Škaloud P (2016) Influence of substrate and pH on the diversity of the aeroterrestrial alga Klebsormidium (Klebsormidiales, Streptophyta): a potentially important factor for sympatric speciation. Phycologia 55(4):347–358. doi:10.2216/15-110.1

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ryšánek D, Hrčková K, Škaloud P (2015) Global ubiquity and local endemism of free-living terrestrial protists: phylogeographic assessment of the streptophyte alga Klebsormidium. Environ. Microbiol. 17(3):689–698. doi:10.1111/1462-2920.12501

    Article  PubMed  Google Scholar 

  31. Karsten U, Herburger K, Holzinger A (2016) Living in biological soil crust communities of African deserts—physiological traits of green algal Klebsormidium species (Streptophyta) to cope with desiccation, light and temperature gradients. J. Plant Physiol. (194):2–12. doi:10.1016/j.jplph.2015.09.002

  32. Škaloud P, Rindi F (2013) Ecological differentiation of cryptic species within an asexual protist morphospecies: a case study of filamentous green alga Klebsormidium (Streptophyta). J. Eukaryot. Microbiol. 60(4):350–362. doi:10.1111/jeu.12040

    Article  PubMed  Google Scholar 

  33. Škaloud P (2006) Variation and taxonomic significance of some morphological features in European strains of Klebsormidium (Klebsormidiophyceae, Streptophyta). Nova Hedwigia 83(3–4):533–550. doi:10.1127/0029-5035/2006/0083-0533

    Article  Google Scholar 

  34. Holzinger A, Kaplan F, Blaas K, et al. (2014) Transcriptomics of desiccation tolerance in the streptophyte green alga Klebsormidium reveal a land plant-like defense reaction. PLoS One 9(10):e110630. doi:10.1371/journal.pone.0110630

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ryšánek D, Elster J, Kováčik L, et al. (2016) Diversity and dispersal capacities of a terrestrial algal genus Klebsormidium (Streptophyta) in polar regions. FEMS Microbiol. Ecol. 92(4). doi:10.1093/femsec/fiw039

  36. Kitzing C, Karsten U (2015) Effects of UV radiation on optimum quantum yield and sunscreen contents in members of the genera Interfilum, Klebsormidium, Hormidiella and Entransia (Klebsormidiophyceae, Streptophyta). Eur. J. Phycol. 50(3):279–287. doi:10.1080/09670262.2015.1031190

    Article  CAS  Google Scholar 

  37. Holzinger A, Lütz C, Karsten U (2011) Desiccation stress causes structural and ultrastructural alterations in the aeroterrestrial green alga Klebsormidium crenulatum (Klebsormidiophyceae, Streptophyta) isolated from an alpine soil crust. J. Phycol. 47(3):591–602. doi:10.1111/j.1529-8817.2011.00980.x

    Article  PubMed  Google Scholar 

  38. Gladis-Schmacka F, Glatzel S, Karsten U, et al. (2014) Influence of local climate and climate change on aeroterrestrial phototrophic biofilms. Biofouling 30(4):401–414. doi:10.1080/08927014.2013.878334

    Article  PubMed  Google Scholar 

  39. Karsten U, Herburger K, Holzinger A (2014) Dehydration, temperature and light tolerance in members of the aeroterrestrial green algal genus Interfilum (Streptophyta) from biogeographically different temperate soils. J. Phycol. 50(5):804–816. doi:10.1111/jpy.12210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Karsten U, Holzinger A (2012) Light, temperature, and desiccation effects on photosynthetic activity, and drought-induced ultrastructural changes in the green alga Klebsormidium dissectum (Streptophyta) from a high alpine soil crust. Microb. Ecol. 63(1):51–63. doi:10.1007/s00248-011-9924-6

    Article  CAS  PubMed  Google Scholar 

  41. Karsten U, Lütz C, Holzinger A (2010) Ecophysiological performance of the aeroterrestrial green alga Klebsormidium crenulatum (Charophyceae, Streptophyta) isolated from an alpine soil crust with an emphasis on desiccation stress. J. Phycol. 46(6):1187–1197. doi:10.1111/j.1529-8817.2010.00921.x

    Article  Google Scholar 

  42. Hori K, Maruyama F, Fujisawa T, et al. (2014) Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat. Commun. 5:1–9. doi:10.1038/ncomms4978

    Article  CAS  Google Scholar 

  43. Fischer M, Bossdorf O, Gockel S, et al. (2010) Implementing large-scale and long-term functional biodiversity research: the biodiversity Exploratories. Basic and applied Ecology 11(6):473–485. doi:10.1016/j.baae.2010.07.009

    Article  Google Scholar 

  44. Starr RC, Zeikus JA (1993) UTEX—the culture collection of algae at the University of Texas at Austin 1993 list of cultures. J. Phycol. 29:1–106. doi:10.1111/j.0022-3646.1993.00001.x

    Article  Google Scholar 

  45. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user Interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27(2):221–224. doi:10.1093/molbev/msp259

    Article  CAS  PubMed  Google Scholar 

  46. Akaike H (1974) A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6):716–723. doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  47. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7):1870–1874. doi:10.1093/molbev/msw054

    Article  CAS  PubMed  Google Scholar 

  48. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574. doi:10.1093/bioinformatics/btg180

    Article  CAS  PubMed  Google Scholar 

  49. Schreiber U, Bilger W (1993) Progress in chlorophyll fluorescence research: major developments during the past years in retrospect. In: Behnke H-D, Lüttge U, Esser K, et al. (eds) Progress in botany / Fortschritte der Botanik: structural botany physiology genetics taxonomy Geobotany / Struktur Physiologie Genetik Systematik Geobotanik. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 151–173

    Chapter  Google Scholar 

  50. Gustavs L, Schumann R, Eggert A, et al. (2009) In vivo growth fluorometry: accuracy and limits of microalgal growth rate measurements in ecophysiological investigations. Aquat. Microb. Ecol. 55(1):95–104. doi:10.3354/ame01291

    Article  Google Scholar 

  51. Woelfel J, Schoknecht A, Schaub I, et al. (2014) Growth and photosynthesis characteristics of three benthic diatoms from the brackish southern Baltic Sea in relation to varying environmental conditions. Phycologia 53(6):639–651. doi:10.2216/14-019.1

    Article  CAS  Google Scholar 

  52. R Development Core Team (2009) R: a language and environment for statistical computing. R foundation for statistical computing

  53. Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401(6756):877–884. doi:10.1038/44766

    Article  CAS  PubMed  Google Scholar 

  54. Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57(4):717–745. doi:10.1111/j.0014-3820.2003.tb00285.x

    Article  PubMed  Google Scholar 

  55. Kembel SW, Cowan PD, Helmus MR, et al. (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26(11):1463–1464. doi:10.1093/bioinformatics/btq166

    Article  CAS  PubMed  Google Scholar 

  56. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20(2):289–290. doi:10.1093/bioinformatics/btg412

    Article  CAS  PubMed  Google Scholar 

  57. Harmon LJ, Weir JT, Brock CD, et al. (2008) GEIGER: investigating evolutionary radiations. Bioinformatics 24(1):129–131. doi:10.1093/bioinformatics/btm538

    Article  CAS  PubMed  Google Scholar 

  58. Holzinger A, Pichrtová M (2016) Abiotic stress tolerance of charophyte green algae: new challenges for omics techniques. Front. Plant Sci. 7. doi:10.3389/fpls.2016.00678

  59. Pfaff S (2015) Desiccation tolerance and temperature dependent growth of Klebsormidium and Coccomyxa, two green algal genera from polar soils. Master Thesis, University of Rostock

  60. Herburger K, Karsten U, Holzinger A (2015) Entransia and Hormidiella, sister lineages of Klebsormidium (Streptophyta), respond differently to light, temperature, and desiccation stress. Protoplasma:1–15. doi:10.1007/s00709-015-0889-z

  61. Aigner S, Remias D, Karsten U, et al. (2013) Unusual phenolic compounds contribute to ecophysiological performance in the purple-colored green alga Zygogonium ericetorum (Zygnematophyceae, Streptophyta) from a high-alpine habitat. J. Phycol. 49(4):648–660. doi:10.1111/jpy.12075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Herburger K, Lewis LA, Holzinger A (2014) Photosynthetic efficiency, desiccation tolerance and ultrastructure in two phylogenetically distinct strains of alpine Zygnema sp. (Zygnematophyceae, Streptophyta): role of pre-akinete formation. Protoplasma 252(2):571–589. doi:10.1007/s00709-014-0703-3

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pichrtová M, Kulichová J, Holzinger A (2014) Nitrogen limitation and slow drying induce desiccation tolerance in conjugating green algae (Zygnematophyceae, Streptophyta) from polar habitats. PLoS One 9(11):e113137 EP. doi:10.1371/journal.pone.0113137

    Article  Google Scholar 

  64. Pichrtová M, Hájek T, Elster J (2014) Osmotic stress and recovery in field populations of Zygnema sp. (Zygnematophyceae, Streptophyta) on Svalbard (high Arctic) subjected to natural desiccation. FEMS Microbiol. Ecol. 89(2):270–280. doi:10.1111/1574-6941.12288

    Article  PubMed  Google Scholar 

  65. Herburger K, Holzinger A (2015) Localization and quantification of callose in the Streptophyte green algae Zygnema and Klebsormidium: correlation with desiccation tolerance. Plant Cell Physiol. 56(11):2259–2270. doi:10.1093/pcp/pcv139

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Pfaff S, Borchhardt N, Boy J, et al. (2016) Desiccation tolerance and growth-temperature requirements of Coccomyxa (Trebouxiophyceae, Chlorophyta) strains from Antarctic biological soil crusts. Algol. Stud.:1–18. doi:10.1127/algol_stud/2016/0245

  67. Becker B, Marin B (2009) Streptophyte algae and the origin of Embryophytes. Ann. Bot. 103(7):999–1004. doi:10.1093/aob/mcp044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gray DW, Lewis LA, Cardon Z (2007) Photosynthetic recovery following desiccation of desert green algae (Chlorophyta) and their aquatic relatives. Plant Cell Environ. 30(10):1240–1255. doi:10.1111/j.1365-3040.2007.01704.x

    Article  CAS  PubMed  Google Scholar 

  69. Gasulla F, Nova PG, Esteban-Carrasco A, et al. (2009) Dehydration rate and time of desiccation affect recovery of the lichenic algae Trebouxia erici: alternative and classical protective mechanisms. Planta 231(1):195–208. doi:10.1007/s00425-009-1019-y

    Article  CAS  PubMed  Google Scholar 

  70. Häubner N, Schumann R, Karsten U (2006) Aeroterrestrial microalgae growing in biofilms on facades—response to temperature and water stress. Microb. Ecol. 51(3):285–293. doi:10.1007/s00248-006-9016-1

    Article  PubMed  Google Scholar 

  71. Harel Y, Ohad I, Kaplan A (2004) Activation of photosynthesis and resistance to photoinhibition in cyanobacteria within biological desert crust. Plant Physiol. 136(2):3070–3079. doi:10.1104/pp.104.047712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Proctor MC, Smirnoff N (2000) Rapid recovery of photosystems on rewetting desiccation-tolerant mosses: chlorophyll fluorescence and inhibitor experiments. J. Exp. Bot. 51(351):1695–1704. doi:10.1093/jexbot/51.351.1695

    Article  CAS  PubMed  Google Scholar 

  73. Elster J (1999) Algal versatility in various extreme environments. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Springer Netherlands, Dordrecht, pp. 215–227

    Chapter  Google Scholar 

  74. Morita RY (1975) Psychrophyilic bacteria. Bacteriol. Rev. 39(2):144–167

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Stamenković M, Hanelt D (2013) Adaptation of growth and photosynthesis to certain temperature regimes is an indicator for the geographical distribution of Cosmarium strains (Zygnematophyceae, Streptophyta). Eur. J. Phycol. 48(1):116–127. doi:10.1080/09670262.2013.772657

    Article  Google Scholar 

  76. Kvíderová J, Lukavský J (2005) The comparison of ecological characteristics of Stichococcus (Chlorophyta) strains isolated from polar and temperate regions. Algol. Stud. 118(1):127–140. doi:10.1127/1864-1318/2006/0118-0127

    Article  Google Scholar 

  77. Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160(6):712–726

    Article  CAS  PubMed  Google Scholar 

  78. Hardy OJ, Pavoine S (2012) Assessing phylogenetic signal with measurement error: a comparison of Mantel tests, Blomberg et al.’s k, and phylogenetic distograms. Evolution 66(8):2614–2621. doi:10.1111/j.1558-5646.2012.01623.x

Download references

Acknowledgements

We thank the managers of the three Exploratories, Kirsten Reichel-Jung, Swen Renner, Katrin Hartwich, Sonja Gockel, Kerstin Wiesner, and Martin Gorke, for their work in maintaining the plot and project infrastructure; Christiane Fischer and Simone Pfeiffer for giving support through the central office; Michael Owonibi for managing the central database; and Markus Fischer, Eduard Linsenmair, Dominik Hessenmöller, Jens Nieschulze, Daniel Prati, Ingo Schöning, François Buscot, Ernst-Detlef Schulze, Wolfgang W. Weisser, and the late Elisabeth Kalko for their role in setting up the Biodiversity Exploratories project. We thank Thomas Pröschold and Tatyana Darienko for setting up the Klebsormidium cultures. We further thank Tatiana Mikhailyuk for the identification of the strains and the discussion of some results. We also thank the reviewers whose comments and suggestions greatly improved the manuscript. The work has been funded by the Deutsche Forschungsgemeinschaft (DFG) Priority Program 1374 “Infrastructure-Biodiversity-Exploratories” in the frame of the project SoilCrust (KA899/20-1). Field work permits were issued by the responsible state environmental offices of Baden-Württemberg, Thüringen, and Brandenburg (according to § 72 Brandenburgisches Naturschutzgesetz).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antje Donner.

Electronic supplementary material

ESM. 1

Growth rates of investigated Klebsormidium strains (median, n = 4). (DOCX 15 kb).

ESM. 2

Absolute values of Y(II) at time point zero (start of experiment) for Klebsormidium strains investigated in this study (median, n = 4). (DOCX 13 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donner, A., Glaser, K., Borchhardt, N. et al. Ecophysiological Response on Dehydration and Temperature in Terrestrial Klebsormidium (Streptophyta) Isolated from Biological Soil Crusts in Central European Grasslands and Forests. Microb Ecol 73, 850–864 (2017). https://doi.org/10.1007/s00248-016-0917-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0917-3

Keywords

Navigation