Skip to main content
Log in

Diversity and Assembling Processes of Bacterial Communities in Cryoconite Holes of a Karakoram Glacier

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Cryoconite holes are small ponds that form on the surface of glaciers that contain a dark debris, the cryoconite, at the bottom and host active ecological communities. Differences in the structure of bacterial communities have been documented among Arctic and mountain glaciers, and among glaciers in different areas of the world. In this study, we investigated the structure of bacterial communities of cryoconite holes of Baltoro Glacier, a large (62 km in length and 524 km2 of surface) glacier of the Karakoram, by high-throughput sequencing of the V5-V6 hypervariable regions of the 16S rRNA gene. We found that Betaproteobacteria dominated bacterial communities, with large abundance of genera Polaromonas, probably thanks to its highly versatile metabolism, and Limnohabitans, which may have been favoured by the presence of supraglacial lakes in the area where cryoconite holes were sampled. Variation in bacterial communities among different sampling areas of the glacier could be explained by divergent selective processes driven by variation in environmental conditions, particularly pH, which was the only environmental variable that significantly affected the structure of bacterial communities. This variability may be due to both temporal and spatial patterns of variation in environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4

Similar content being viewed by others

References

  1. Anesio AM, Laybourn-Parry J (2012) Glaciers and ice sheets as a biome. Trends Ecol. Evol. 27:219–225. doi:10.1016/j.tree.2011.09.012

    Article  PubMed  Google Scholar 

  2. Laybourn-Parry J, Tranter M, Hodson A (2012) The ecology of snow and ice environments. Oxford University Press, Oxford

  3. Margesin R, Schinner F, Marx JC, Gerday C (2008) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin

  4. Boetius A, Anesio AM, Deming JW, et al. (2015) Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 13:677–690. doi:10.1038/nrmicro3522

  5. Stibal M, Šabacká M, Žárský J (2012) Biological processes on glacier and ice sheet surfaces. Nat Geosci 5:771–774. doi:10.1038/ngeo1611

  6. MacDonell S, Fitzsimons S (2008) The formation and hydrological significance of cryoconite holes. Prog Phys Geogr 32:595–610. doi:10.1177/0309133308101382

  7. Mihalcea C, Mayer C, Diolaiuti G, et al. (2006) Ice ablation and meteorological conditions on the debris-covered area of Baltoro glacier, Karakoram, Pakistan. Ann Glaciol 43:292–300. doi:10.3189/172756406781812104

  8. Wharton RA, McKay CP, Simmons GM, Parker BC (1985) Cryoconite holes on glaciers. Bioscience 35:499–503. doi:10.2307/1309818

    Article  PubMed  Google Scholar 

  9. Cook J, Edwards A, Takeuchi N, Irvine-Fynn T (2015) Cryoconite: the dark biological secret of the cryosphere. Prog Phys Geogr 40:66–111. doi:10.1177/0309133315616574

  10. Musilova M, Tranter M, Bamber JL, Takeuchi N, Anesio A (2016) Experimental evidence that microbial activity lowers the albedo of glaciers. Geochemical Perspectives Letters 106–116

  11. Säwström C, Mumford P, Marshall W, et al. (2002) The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79°N). Polar Biol 25:591–596

  12. Stibal M, Tranter M, Benning LG, Rěhák J (2008) Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Environ Microbiol 10:2172–2178

  13. Segawa T, Ishii S, Ohte N, et al. (2014) The nitrogen cycle in cryoconites: naturally occurring nitrification-denitrification granules on a glacier. Environ. Microbiol. 16:3250–3262. doi:10.1111/1462-2920.12543

    Article  CAS  PubMed  Google Scholar 

  14. Edwards A, Mur LAJ, Girdwood SE, et al. (2014) Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers. FEMS Microbiol. Ecol. 89:222–237. doi:10.1111/1574-6941.12283

    Article  CAS  PubMed  Google Scholar 

  15. Edwards A, Pachebat JA, Swain M, et al. (2013) A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem. Environ. Res. Lett. 8:35003. doi:10.1088/1748-9326/8/3/035003

    Article  Google Scholar 

  16. Franzetti A, Navarra F, Tagliaferri I, Gandolfi I, Bestetti G, Minora U, Azzoni RS, Diolaiuti G, Smiraglia C, Ambrosini R (2016) Temporal variability of bacterial communities in cryoconite on an Alpine glacier. (2016) Environ Microbiol Rep. doi:10.1111/1758-2229.12499

  17. Takeuchi N, Kohshima S, Seko K (2001) Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arctic, Antarct Alp Res 33:115–122

    Article  Google Scholar 

  18. Takeuchi N, Nishiyama H, Li Z (2010) Structure and formation process of cryoconite granules on Ürümqi glacier no. 1, Tien Shan, China. Ann. Glaciol. 51:9–14. doi:10.3189/172756411795932010

    Article  Google Scholar 

  19. Minora U, Bocchiola D, D’Agata C, et al. (2013) 2001–2010 glacier changes in the central Karakoram National Park: a contribution to evaluate the magnitude and rate of the “Karakoram anomaly”. Cryosph Discuss 7:2891–2941. doi:10.5194/tcd-7-2891-2013

    Article  Google Scholar 

  20. Franzetti A, Tagliaferri I, Gandolfi I, et al. (2016) Light-dependent microbial metabolisms driving carbon fluxes on glacier surfaces. ISME J 10:2984–2988. doi:10.1038/ismej.2016.72

  21. Minora U, Senese A, Bocchiola D, et al. (2015) A simple model to evaluate ice melt over the ablation area of glaciers in the central Karakoram National Park, Pakistan. Ann Glaciol 56:202–216. doi:10.3189/2015AoG70A206

  22. Tatangelo V, Franzetti A, Gandolfi I, et al. (2014) Effect of preservation method on the assessment of bacterial community structure in soil and water samples. FEMS Microbiol Lett 356:32–38. doi:10.1111/1574-6968.12475

  23. Telling J, Anesio AM, Hawkings J, et al. (2010) Measuring rates of gross photosynthesis and net community production in cryoconite holes: a comparison of field methods. Ann Glaciol 51:153–162

  24. ASTM (2000) Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils - Method D 2974-00. American Society for Testing and Materials, West Conshohocken

  25. Hodson A, Cameron K, Bøggild C, et al. (2010) The structure, biological activity and biogeochemistry of cryoconite aggregates upon an Arctic valley glacier: Longyearbreen, Svalbard. J Glaciol 56:349–362. doi:10.3189/002214310791968403

  26. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10:996–998. doi:10.1038/nmeth.2604

    Article  CAS  PubMed  Google Scholar 

  27. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi:10.1128/AEM.00062-07

  28. Legendre P, Legendre L (1998) Numerical ecology, 2nd English edn. Elsevier, Amsterdam

  29. Borcard D, Legendre P, Drapeau D (1992) Partialling out the Spatial Component of Ecological Variation. Ecology 73(3):1045–1055

  30. Borcard D, Gillet F, Legendre F (2011) Numerical ecology with R. Springer, New York

    Book  Google Scholar 

  31. Blanchet G, Legendre P, Borcard D (2008) Forward selection of spatial explanatory variables. Ecology 89:2623–2632. doi:10.1890/07-0986.1

    Article  PubMed  Google Scholar 

  32. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  33. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423. doi:10.1145/584091.584093

    Article  Google Scholar 

  34. GiniC (1912) Variabilità e Mutabilità. Contributo allo studio delle distribuzioni e delle relazioni statistiche. C. Cuppini, Bologna

  35. Wittebolle L, Marzorati M, Clement L, et al. (2009) Initial community evenness favours functionality under selective stress. Nature 458:623–626. doi:10.1038/nature07840

    Article  CAS  PubMed  Google Scholar 

  36. Schielzeth H, Forstmeier W (2009) Conclusions beyond support: overconfident estimates in mixed models. Behav Ecol 20:416–420. doi:10.1093/beheco/arn145

  37. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

  38. Hartmann M, Howes CG, VanInsberghe D, et al. (2012) Significant and persistent impact of timber harvesting on soil microbial communities in northern coniferous forests. ISME J 6:2199–2218. doi:10.1038/ismej.2012.84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Legendre P, Andersson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24. doi:10.1890/0012-9615

  40. Oksanen J, Blanchet FG, Kindt R, et al. (2015) vegan: Community Ecology Package. R package version 2.3-0. http://CRAN.R-project.org/package=vegan Accessed 15 Dec 2016

  41. De Cáceres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos 119:1674–1684. doi:10.1111/j.1600-0706.2010.18334.x

    Article  Google Scholar 

  42. Griffith DA, Peres-Neto PR (2006) Spatial modeling in ecology: the flexibility of Eigenfunction spatial analyses. Ecology 87:2603–2613. doi:10.1890/0012-9658

  43. Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68. doi:10.1016/S0304-3800(01)00501-4

  44. Legendre P, Legendre L (2012) Numerical ecology, 3rd English Ed. Elsevier Science B.V, Amsterdam

  45. Hell K, Edwards A, Zarsky J, et al. (2013) The dynamic bacterial communities of a melting high Arctic glacier snowpack. ISME J 7:1814–1826. doi:10.1038/ismej.2013.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Musilova M, Tranter M, Bennett SA, et al. (2015) Stable microbial community composition on the Greenland icesheet. Front Microbiol 6:193 doi:10.3389/fmicb.2015.00193

  47. Jangid K, Whitman WB, Condron LM, et al. (2013) Soil bacterial community succession during long-term ecosystem development. Mol Ecol 22:3415–3424. doi:10.1111/mec.12325

  48. Philippot L, Tscherko D, Bru D, Kandeler E (2011) Distribution of High Bacterial Taxa Across the Chronosequence of Two Alpine Glacier Forelands. Microb Ecol 61(2):303-312

  49. Darcy JL, Lynch RC, King AJ, et al. (2011) Global distribution of Polaromonas phylotypes - evidence for ahighly successful dispersal capacity. PLoS One. doi:10.1371/journal.pone.0023742

    Google Scholar 

  50. Franzetti A, Tatangelo V, Gandolfi I, et al. (2013) Bacterial community structure on two alpine debris-covered glaciers and biogeography of Polaromonas phylotypes. ISME J 7:1483–1492. doi:10.1038/ismej.2013.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Michaud L, Caruso C, Mangano S, et al. (2012) Predominance of Flavobacterium, pseudomonas, and Polaromonas within the prokaryotic community of freshwater shallow lakes in the northern Victoria land, East Antarctica. FEMS Microbiol. Ecol. 82:391–404. doi:10.1111/j.1574-6941.2012.01394.x

    Article  CAS  PubMed  Google Scholar 

  52. Mattes TE, Alexander AK, Richardson PM, et al. (2008) The genome of Polaromonas sp. strain JS666: insights into the evolution of a hydrocarbon- and xenobiotic-degrading bacterium, and features of relevance to biotechnology. Appl Environ Microbiol 74:6405–6416. doi:10.1128/AEM.00197-08

  53. Wang Z, Chang X, Yang X, et al. (2014) Draft genome sequence of Polaromonas glacialis strain R3-9, a Psychrotolerant bacterium isolated from Arctic glacial foreland. Genome Announc 2:e00695–e00614. doi:10.1128/genomeA.00695-14

    PubMed  PubMed Central  Google Scholar 

  54. Yagi JM, Sims D, Brettin T, Bruce D, Madsen EL (2009) The genome of strain CJ2, isolated from coal tar-contaminated sediment, reveals physiological and metabolic versatility and evolution through extensive horizontal gene transfer. Environ Microbiol 11(9):2253–2270

  55. Kasalický V, Jezbera J, Hahn MW, Šimek K (2013) The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains. PLoS One 8:e58209. doi:10.1371/journal.pone.0058209

    Article  PubMed  PubMed Central  Google Scholar 

  56. Caliz J, Casamayor EO (2014) Environmental controls and composition of anoxygenic photoheterotrophs in ultraoligotrophic high-altitude lakes (central pyrenees). Environ. Microbiol Rep 6:145–151. doi:10.1111/1758-2229.12142

  57. Zeng Y, Kasalický V, Šimek K, Koblížeka M (2012) Genome sequences of two freshwater betaproteobacterial isolates, Limnohabitans species strains Rim28 and Rim47, indicate their capabilities as both photoautotrophs and ammonia oxidizers. J Bacteriol 194:6302–6303. doi:10.1128/JB.01481-12

  58. Cameron KA, Hodson AJ, Osborn AM (2012) Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. FEMS Microbiol. Ecol. 82:254–267. doi:10.1111/j.1574-6941.2011.01277.x

    Article  CAS  PubMed  Google Scholar 

  59. Waidner LA, Kirchman DL (2008) Diversity and distribution of ecotypes of the aerobic anoxygenic phototrophy gene pufM in the Delaware estuary. Appl Environ Microbiol 74:4012–4021. doi:10.1128/AEM.02324-07

  60. Jiao N, Zhang Y, Zeng Y, et al. (2007) Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ Microbiol 9:3091–3099. doi:10.1111/j.1462-2920.2007.01419.x

  61. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364. doi:10.1890/05-1839

    Article  PubMed  Google Scholar 

  62. Cameron KA, Stibal M, Zarsky JD, et al. (2016) Supraglacial bacterial community structures vary across the Greenland ice sheet. FEMS Microbiol Ecol. doi:10.1093/femsec/fiv164

  63. Gokul JK, Hodson AJ, Saetnan ER, et al. (2016) Taxon interactions control the distributions of cryoconite bacteria colonizing ahigh Arctic ice cap. Mol Ecol. doi:10.1111/mec.13715

Download references

Acknowledgements

Authors thank Science for Life Sequencing facility (Stockholm, Sweden) for sequencing and the Central Karakoram National Park (CKNP, Pakistan) for hosting and supporting our field investigations. Some bioinformatics analyses have been run on PLX server (CINECA, Bologna, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Franzetti.

Ethics declarations

Funding

This work was partially funded by PAPRIKA project (supported by EvK2CNR Association), by SEED project (funded by the Italian and the Pakistani governments), by the Italian Ministry of Research [PRIN grant 2010AYKTAB to CS] and by the University of Milano-Bicocca (grant 7-19-2001100-2 to RA).

Electronic supplementary material

ESM 1

(PDF 733 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrosini, R., Musitelli, F., Navarra, F. et al. Diversity and Assembling Processes of Bacterial Communities in Cryoconite Holes of a Karakoram Glacier. Microb Ecol 73, 827–837 (2017). https://doi.org/10.1007/s00248-016-0914-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0914-6

Keywords

Navigation