Skip to main content
Log in

Cutaneous Bacterial Communities of a Poisonous Salamander: a Perspective from Life Stages, Body Parts and Environmental Conditions

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Amphibian skin provides a habitat for bacterial communities in its mucus. Understanding the structure and function of this “mucosome” in the European fire salamander (Salamandra salamandra) is critical in the context of novel emerging pathogenic diseases. We compare the cutaneous bacterial communities of this species using amplicon-based sequencing of the 16S rRNA V4 region. Across 290 samples, over 4000 OTUs were identified, four of them consistently present in all samples. Larvae and post-metamorphs exhibited distinct cutaneous microbial communities. In adults, the parotoid gland surface had a community structure different from the head, dorsum, flanks and ventral side. Larvae from streams had higher phylogenetic diversity than those found in ponds. Their bacterial community structure also differed; species of Burkholderiaceae, Comamonadaceae, Methylophilaceae and Sphingomonadaceae were more abundant in pond larvae, possibly related to differences in factors like desiccation and decomposition rate in this environment. The observed differences in the cutaneous bacterial community among stages, body parts and habitats of fire salamanders suggest that both host and external factors shape these microbiota. We hypothesize that the variation in cutaneous bacterial communities might contribute to variation in pathogen susceptibility among individual salamanders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Toledo R, Jared C (1993) Cutaneous adaptations to water balance in amphibians. Comp Biochem Physiol A Physiol 105:593–608

    Article  Google Scholar 

  2. Toledo R, Jared C (1995) Cutaneous granular glands and amphibian venoms. Comp Biochem Physiol A Physiol 111:1–29

    Article  Google Scholar 

  3. Daly J, Spande T, Garraffo H (2005) Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds. J Nat Prod 68:1556–1575

    Article  CAS  PubMed  Google Scholar 

  4. Rollins-Smith L (2005) Antimicrobial peptide defenses in amphibian skin. Integr Comp Biol 45:137–142

    Article  CAS  PubMed  Google Scholar 

  5. Woodhams D, Brandt H, Baumgartner S, Kielgast J, Küpfer E, Tobler U, Davis L, Schmidt B, Bel C, Hodel S, Knight R, McKenzie V (2014) Interacting symbionts and immunity in the amphibian skin mucosome predict disease risk and probiotic effectiveness. PLoS One 9:e96375

    Article  PubMed  PubMed Central  Google Scholar 

  6. McKenzie V, Bowers R, Fierer N, Knight R, Lauber C (2012) Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME J 6:588–596

    Article  CAS  PubMed  Google Scholar 

  7. Kueneman J, Parfrey L, Woodhams D, Archer H, Knight R, McKenzie V (2014) The amphibian skin-associated microbiome across species, space and life history stages. Mol Ecol 23:1238–1250

    Article  PubMed  Google Scholar 

  8. Kueneman J, Woodhams D, Van Treuren W, Archer H, Knight R, McKenzie V (2016) Inhibitory bacteria reduce fungi on early life stages of endangered Colorado boreal toads (Anaxyrus boreas). ISME J 10:934–944

    Article  PubMed  Google Scholar 

  9. Loudon A, Woodhams D, Parfrey L, Archer H, Knight R, McKenzie V, Harris R (2014) Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus). ISME J 8:830–840

    Article  CAS  PubMed  Google Scholar 

  10. Vences M, Granzow S, Künzel S, Tebbe C, Baines J, Dohrmann A (2015) Composition and variation of the skin microbiota in sympatric species of European newts (Salamandridae). Amph-reptil 36:5–12

    Article  Google Scholar 

  11. Bataille A, Lee-Cruz L, Tripathi B, Kim H, Waldman B (2016) Microbiome variation across amphibian skin regions: implications for chytridiomycosis mitigation efforts. Microb Ecol 71:221–232

    Article  PubMed  Google Scholar 

  12. Sabino-Pinto J, Bletz MC, Islam MM, Shimizu N, Bhuju S, Geffers R, Jarek M, Kurabayashi A, Vences M (2016) Composition of the cutaneous bacterial community in Japanese amphibians: effects of captivity, host species, and body region. Microb Ecol. doi:10.1007/s00248-016-0797-6

    PubMed  Google Scholar 

  13. Viertel B, Richter S (1999) Anatomy: viscera and endocrines. In: McDiarmid RW, Altig R (eds) Tadpoles: the biology of anuran larva. Univ Chicago Press, Chicago, USA, pp 92–148

  14. Gibson L (1969) Gibson L (1969) Seasonal variations in the integumental histology of the newt, Taricha granulosa (Skilton). Master dissertation. Oregon State University, Oregon, USA, pp 1–33

  15. Perrotta I, Sperone E, Bernabò I, Tripepi S, Brunelli E (2012) The shift from aquatic to terrestrial phenotype in Lissotriton italicus: larval and adult remodelling of the skin. Zoology (Jena) 115:170–178

    Article  Google Scholar 

  16. Thiesmeier B, Grossenbacher K (2004) Salamandra salamandra (Linnaeus, 1758) - Feuersalamander. In: Thiesmeier B, Grossenbacher K (ed) Die Amphibien und Reptilien Europas. Schwanzlurche IIB. Aula-Verlag, Wiebelsheim, Germany, pp 1059–1132

  17. Phisalix-Picot M. Recherches embryologiques, histologiques et physiologiques sur les glandes à venin de la salamandre terrestre. Doctoral dissertation. Librairie C. Reinwald, Schleicher frères, éditeurs, Paris. p. 187. doi:10.5962/bhl.title.12443

  18. Ohmura H, Wakahara M (1998) Transformation of skin from larval to adult types in normally metamorphosing and metamorphosis-arrested salamander, Hynobius retardatus. Differentiation 63:237–246

    Google Scholar 

  19. Kelly D (1966) The Leydig cell in larval amphibian epidermis. Fine structure and function. Anat Rec 154:685–699

    Article  CAS  PubMed  Google Scholar 

  20. Geng X, Wei H, Shang H, Zhou M, Chen B, Zhang F, Zang X, Li P, Sun J, Che J, Zhang Y, Xu C (2015) Proteomic analysis of the skin of Chinese giant salamander (Andrias davidianus). J Proteomics 119:196–208

    Article  CAS  PubMed  Google Scholar 

  21. Mebs D, Pogoda W (2005) Variability of alkaloids in the skin secretion of the European fire salamander (Salamandra salamandra terrestris). Toxicon 45:603–606

    Article  CAS  PubMed  Google Scholar 

  22. Vences M, Sanchez E, Hauswaldt J, Eikelmann D, Rodríguez A, Carranza S, Donaire D, Gehara M, Helfer V, Lötters S, Werner P, Schulz S, Steinfartz S (2014) Nuclear and mitochondrial multilocus phylogeny and survey of alkaloid content in true salamanders of the genus Salamandra (Salamandridae). Mol Phylogenet Evol 73:208–216

    Article  CAS  PubMed  Google Scholar 

  23. Habermehl G, Preusser H (1969) Hemmung des Wachstums von Pilzen und Bakterien durch das Hautdrüsensekret von Salamandra maculosa. Z Naturforsch B 24

  24. Preusser H, Habermehl G, Sablofski M, Schmall-Haury D (1975) Antimicrobial activity of alkaloids from amphibian venoms and effects on the ultrastructure of yeast cells. Toxicon 13:285–288

    Article  CAS  PubMed  Google Scholar 

  25. North S, Alford RA (2008) Infection intensity and sampling locality affect Batrachochytrium dendrobatidis distribution among body regions on green-eyed tree frogs Litoria genimaculata. Dis Aquat Organ 81:177–188

    Article  PubMed  Google Scholar 

  26. Weitere M, Tautz D, Neumann D, Steinfartz S (2004) Adaptive divergence vs. environmental plasticity: tracing local genetic adaptation of metamorphosis traits in salamanders. Mol Ecol 13:1665–1677

    Article  PubMed  Google Scholar 

  27. Reinhardt T, Steinfartz S, Paetzold A, Weitere M (2013) Linking the evolution of habitat choice to ecosystem functioning: direct and indirect effects of pond-reproducing fire salamanders on aquatic-terrestrial subsidies. Oecologia 173:281–291

    Article  PubMed  Google Scholar 

  28. Caspers B, Krause E, Hendrix R, Kopp M, Rupp O, Rosentreter K, Steinfartz S (2014) The more the better - polyandry and genetic similarity are positively linked to reproductive success in a natural population of terrestrial salamanders (Salamandra salamandra). Mol Ecol 23:239–250

    Article  PubMed  Google Scholar 

  29. Caspers B, Steinfartz S, Krause E (2015) Larval deposition behaviour and maternal investment of females reflect differential habitat adaptation in a genetically diverging salamander population. Behav Ecol Sociobiol 69:407–413

    Article  Google Scholar 

  30. Bletz M, Loudon A, Becker M, Bell S, Woodhams D, Minbiole K, Harris R (2013) Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use. Ecol Lett 16:807–820

    Article  PubMed  Google Scholar 

  31. Yasumiba K, Bell S, Alford R (2016) Cell density effects of frog skin bacteria on their capacity to inhibit growth of the chytrid fungus, Batrachochytrium dendrobatidis. Microb Ecol 71:124–130

    Article  PubMed  Google Scholar 

  32. Martel A, Spitzen-van der Sluijs A, Blooi M, Bert W, Ducatelle R, Fisher M, Woeltjes A, Bosman W, Chiers K, Bossuyt F, Pasmans F (2013) Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc Natl Acad Sci U S A 110:15325–15329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sabino-Pinto J, Bletz MC, Hendrix R, Perl RGB, Martel A, Pasmans F, Lötters S, Mutschmann F, Schmeller DS, Schmidt BR, Veith M, Wagner N, Vences M, Steinfartz S (2015) First evidence of Batrachochytrium salamandrivorans from a captive salamander population in Germany. Amphib-Reptil 36:411–416

    Article  Google Scholar 

  34. Bettin C, Greven H (1986) Bacteria on the skin of Salamandra salamandra (L.) (Amphibia, Urodela) with notes on their possible significance. Zool Anz 216:267–270

    Google Scholar 

  35. Schloss P, Gevers D, Westcott S (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6, e27310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kozich J, Westcott S, Baxter N, Highlander S, Schloss P (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Caporaso J, Kuczynski J, Stombaugh J, Bittinger K, Bushman F, Costello E, Fierer N, Peña A, Goodrich J, Gordon J, Huttley G, Kelley S, Knights D, Koenig J, Ley R, Lozupone C, McDonald D, Muegge B, Pirrung M, Reeder J, Sevinsky J, Turnbaugh P, Walters W, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aronesty E (2011) ea–utils: Command–line tools for processing biological sequencing data., http://code.google.com/p/ea–utils. Accessed 1 Oct 2015

    Google Scholar 

  39. Aronesty E (2013) Comparison of sequencing utility programs. Open Bioinformat J 7:1–8

    Article  Google Scholar 

  40. Edgar R, Haas B, Clemente J, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rideout J, He Y, Navas-Molina J, Walters W, Ursell L, Gibbons S, Chase J, McDonald D, Gonzalez A, Robbins-Pianka A, Clemente J, Gilbert J, Huse S, Zhou H, Knight R, Caporaso J (2014) Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences. PeerJ 2, e545

    Article  PubMed  PubMed Central  Google Scholar 

  42. Edgar R (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  43. Wang Q, Garrity G, Tiedje J, Cole J (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Price M, Dehal P, Arkin A (2010) Fasttree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bokulich N, Subramanian S, Faith J, Gevers D, Gordon J, Knight R, Mills D, Caporaso J (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–59

    Article  CAS  PubMed  Google Scholar 

  46. Core Team R (2013) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/

    Google Scholar 

  47. Clarke K (1993) Non-parametric multivariate analyses of changes in community structure. Austral Ecol 18:117–143

    Article  Google Scholar 

  48. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett W, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60

    Article  PubMed  PubMed Central  Google Scholar 

  49. Walke J, Becker M, Loftus S, House L, Cormier G, Jensen R, Belden L (2014) Amphibian skin may select for rare environmental microbes. ISME J 8:2207–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Becker M, Richards-Zawacki C, Gratwicke B, Belden L (2014) The effect of captivity on the cutaneous bacterial community of the critically endangered Panamanian golden frog (Atelopus zeteki). Biol Conserv 176:199–206

    Article  Google Scholar 

  51. Longo A, Savage A, Hewson I, Zamudio K (2015) Seasonal and ontogenetic variation of skin microbial communities and relationships to natural disease dynamics in declining amphibians. R Soc Open Sci 2:140377

    Article  PubMed  PubMed Central  Google Scholar 

  52. Belden L, Hughey M, Rebollar E, Umile T, Loftus S, Burzynski E, Minbiole K, House L, Jensen R, Becker M, Walke J, Medina D, Ibáñez R, Harris R (2015) Panamanian frog species host unique skin bacterial communities. Front Microbiol 6

  53. Costa S (2013) Diversity of the cutaneous bacterial community in the Perez’ frog. Master dissertation. Universidade de Aveiro, Portugal, http://ria.ua.pt/handle/10773/12634

    Google Scholar 

  54. Antwis R, Preziosi R, Harrison X, Garner T (2015) Amphibian symbiotic bacteria do not show a universal ability to inhibit growth of the global panzootic lineage of Batrachochytrium dendrobatidis. Appl Environ Microbiol 81:3706–3711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Becker M, Walke J, Murrill L, Woodhams D, Reinert L, Rollins-Smith L, Burzynski E, Umile T, Minbiole K, Belden L (2015) Phylogenetic distribution of symbiotic bacteria from Panamanian amphibians that inhibit growth of the lethal fungal pathogen Batrachochytrium dendrobatidis. Mol Ecol 24:1628–1641

    Article  PubMed  Google Scholar 

  56. Hillis A, Prange S, Adomako M, Christensen L, St-Hilaire S, Sheridan P (2015) Characterization of the bacterial microflora on the skin of boreal toads, Anaxyrus (Bufo) boreas boreas, and Columbia spotted frogs, Rana luteiventris, in Grand Teton National Park, Wyoming USA. Int J Microbiol Res 7:588–597

    CAS  Google Scholar 

  57. Rollins-Smith L (1998) Metamorphosis and the amphibian immune system. Immunol Rev 166:221–230

    Article  CAS  PubMed  Google Scholar 

  58. Holden W, Hanlon S, Woodhams D, Chappell T, Wells H, Glisson S, McKenzie V, Knight R, Parris M, Rollins-Smith L (2015) Skin bacteria provide early protection for newly metamorphosed southern leopard frogs (Rana sphenocephala) against the frog-killing fungus, Batrachochytrium dendrobatidis. Biol Cons 187:91–102

    Article  Google Scholar 

  59. Miodoński A, Jasiński A (1979) Scanning electron microscopy of microcorrosion casts of the vascular bed in the skin of the spotted salamander, Salamandra salamandra L. Cell Tissue Res 196:153–162

    Article  PubMed  Google Scholar 

  60. Bingol-Ozakpinar O, Murathanoglu O (2011) The morphology of the dorsal and ventral skin of Triturus karelinii (Caudata: Salamandridae). Biologia 66

  61. Habermehl G (1964) Cholesterin und Cholesterinester aus dem Hautdrüsensekret von Salamandra maculosa taeniata. Justus Liebigs Ann Chem 680:104–107

    Article  CAS  Google Scholar 

  62. Steyn P, Segers P, Vancanneyt M, Sandra P, Kersters K, Joubert J (1998) Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. Proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 48:165–177

    Article  CAS  PubMed  Google Scholar 

  63. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T, Yamamoto H (1990) Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34:99–119

    Article  CAS  PubMed  Google Scholar 

  64. Antwis R, Haworth R, Engelmoer D, Ogilvy V, Fidgett A, Preziosi R (2014) Ex situ diet influences the bacterial community associated with the skin of Red-eyed tree frogs (Agalychnis callidryas). PLoS One 9, e85563

    Article  PubMed  PubMed Central  Google Scholar 

  65. Martel A, Blooi M, Adriaensen C, Van Rooij P, Beukema W, Fisher M, Farrer R, Schmidt B, Tobler U, Goka K, Lips K, Muletz C, Zamudio K, Bosch J, Lotters S, Wombwell E, Garner T, Cunningham A, Spitzen-van der Sluijs A, Salvidio S, Ducatelle R, Nishikawa K, Nguyen T, Kolby J, Van Bocxlaer I, Bossuyt F, Pasmans F (2014) Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346:630–631

    Article  CAS  PubMed  Google Scholar 

  66. Martel A, Adriaensen C, Bogaerts S, Ducatelle R, Favoreel H, Crameri S, Hyatt A, Haesebrouck F, Pasmans F (2012) Novel Chlamydiaceae disease in captive salamanders. Emerg Infect Dis 18:1020–1022

    Article  PubMed  PubMed Central  Google Scholar 

  67. Becker M, Harris R (2010) Cutaneous bacteria of the redback salamander prevent morbidity associated with a lethal disease. PLoS One 5, e10957

    Article  PubMed  PubMed Central  Google Scholar 

  68. Spitzen-van der Sluijs A, Martel A, Asselberghs J, Bales E, Beukema W, Bletz M, Dalbeck L, Goverse E, Kerres A, Kinet T, Kirst K, Laudelout A, Marin da Fonte L, Nöllert A, Ohlhoff D, Sabino-Pinto J, Schmidt B, Speybroeck J, Spikmans F, Steinfartz S, Veith M, Vences M, Wagner N, Pasmans F, Lötters S (2016) Expanding distribution of lethal amphibian fungus Batrachochytrium salamandrivorans in Europe. Emerg Infect Dis 22

  69. Woodhams DC, Bletz MC, Kueneman J, McKenzie V (2016) Managing amphibian disease with skin microbiota. Trends Microbiol 24:161–164

    Article  CAS  PubMed  Google Scholar 

  70. Janssen P (2006) Identifying the dominant soil bacterial taxa in libraries of 16s rrna and 16s rrna genes. Appl Environ Microbiol 72:1719–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Khan S, Horiba Y, Yamamoto M, Hiraishi A (2002) Members of the family c´Comamonadaceae as primary poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-degrading denitrifiers in activated sludge as revealed by a polyphasic approach. Appl Environ Microbiol 68:3206–3214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kalyuzhnaya M, Bowerman S, Lara J, Lidstrom M, Chistoserdova L (2006) Methylotenera mobilis gen. nov., sp. nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae. Int J Syst Evol Microbiol 56:2819–2823

    Article  CAS  PubMed  Google Scholar 

  73. Yoshida M, Ishii S, Fujii D, Otsuka S, Senoo K (2012) Identification of active denitrifiers in rice paddy soil by DNA- and RNA-based analyses. Microbes Environ 27:456–461

    Article  PubMed  PubMed Central  Google Scholar 

  74. Steinfartz S, Weitere M, Tautz D (2007) Tracing the first step to speciation: ecological and genetic differentiation of a salamander population in a small forest. Mol Ecol 16:4550–4561

    Article  CAS  PubMed  Google Scholar 

  75. Walke J, Harris R, Reinert L, Rollins-Smith L, Woodhams D (2011) Social immunity in amphibians: evidence for vertical transmission of innate defenses. Biotropica 43:396–400

    Article  Google Scholar 

  76. Poorten T, Kuhn R (2009) Maternal transfer of antibodies to eggs in Xenopus laevis. Dev Comp Immunol 33:171–175

    Article  CAS  PubMed  Google Scholar 

  77. Stynoski J, Torres-Mendoza Y, Sasa-Marin M, Saporito R (2014) Evidence of maternal provisioning of alkaloid-based chemical defenses in the strawberry poison frog Oophaga pumilio. Ecology 95:587–593

    Article  PubMed  Google Scholar 

  78. Brucker R, Bordenstein S (2012) Speciation by symbiosis. Trends Ecol Evol 27:443–451

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Daniel Goedbloed for helping in the field, Meike Kondermann for her help with lab work, and to the “Amt für Umwelt, Verbraucherschutz und Lokale Agenda” of the city of Bonn for permitting the research and sampling of salamanders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenia Sanchez.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding

This work was funded by the Deutsche Forschungsgemeinschaft through grants to MV (VE247/9-1) and SS (STE 1130/8-1 as part of the German-Israeli project cooperation DIP); by the Deutsche Bundesstiftung Umwelt (DBU); and by the Deutscher Akademischer Austauschdienst through fellowships to ES and MCB.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2876 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchez, E., Bletz, M.C., Duntsch, L. et al. Cutaneous Bacterial Communities of a Poisonous Salamander: a Perspective from Life Stages, Body Parts and Environmental Conditions. Microb Ecol 73, 455–465 (2017). https://doi.org/10.1007/s00248-016-0863-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0863-0

Keywords

Navigation