Skip to main content
Log in

Atlantic Salmon (Salmo salar L.) Gastrointestinal Microbial Community Dynamics in Relation to Digesta Properties and Diet

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

To better understand salmon GI tract microbial community dynamics in relation to diet, a feeding trial was performed utilising diets with different proportions of fish meal, protein, lipid and energy levels. Salmon gut dysfunction has been associated with the occurrence of casts, or an empty hind gut. A categorical scoring system describing expressed digesta consistency was evaluated in relation to GI tract community structure. Faster growing fish generally had lower faecal scores while the diet cohorts showed minor differences in faecal score though the overall lowest scores were observed with a low protein, low energy diet. The GI tract bacterial communities were highly dynamic over time with the low protein, low energy diet associated with the most divergent community structure. This included transiently increased abundance of anaerobic (Bacteroidia and Clostridia) during January and February, and facultatively anaerobic (lactic acid bacteria) taxa from February onwards. The digesta had enriched populations of these groups in relation to faecal cast samples. The majority of samples (60–86 %) across all diet cohorts were eventually dominated by the genus Aliivibrio. The results suggest that an interaction between time of sampling and diet is most strongly related to community structure. Digesta categorization revealed microbes involved with metabolism of diet components change progressively over time and could be a useful system to assess feeding responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GI:

Gastrointestinal

DE:

Digestible energy

SGS:

Summer Gut Syndrome

References

  1. ABARES (2013) Australian Fisheries and Aquaculture Statistics 2012 (ABARES): pp. 119. Australian Bureau of Agricultural and Resource Economics, Canberra, Australia

  2. Green TJ, Smullen R, Barnes AC (2013) Dietary soybean protein concentrate-induced intestinal disorder in marine farmed Atlantic salmon, Salmo salar is associated with alterations in gut microbiota. Vet Microbiol 166:286–292

    Article  CAS  PubMed  Google Scholar 

  3. Tacon AG, Metian M (2008) Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285:146–158

    Article  CAS  Google Scholar 

  4. Hardy RW (2010) Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquac Res 41:770–776

    Article  CAS  Google Scholar 

  5. Barton BA, Schreck CB, Fowler LG (1988) Fasting and diet content affect stress-induced changes in plasma glucose and cortisol in juvenile chinook salmon. Prog Fish Cult 50:16–22

    Article  Google Scholar 

  6. Gomez D, Sunyer JO, Salinas I (2013) The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens. Fish Shellfish Immun 35:1729–1739

    Article  CAS  Google Scholar 

  7. Sullam KE, Essinger SD, Lozupone CA, O’Connor MP, Rosen GL, Knight R, Kilham SS, Russell JA (2012) Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol Ecol 21:3363–3378

    Article  PubMed  Google Scholar 

  8. De Cruz P, Prideaux L, Wagner J, Ng SC, McSweeney C, Kirkwood C, Morrison M, Kamm MA (2012) Characterization of the gastrointestinal microbiota in health and inflammatory bowel disease. Inflamm Bowel Dis 18:372–390

    Article  PubMed  Google Scholar 

  9. Kostic AD, Howitt MR, Garrett WS (2013) Exploring host-microbiota interactions in animal models and humans. Genes Dev 27:701–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hermes G, Zoetendal E, Smidt H (2014) Molecular ecological tools to decipher the role of our microbial mass in obesity. Benef Microbes 5:1–21

    Article  Google Scholar 

  11. Joyce SA, Gahan CG (2014) The gut microbiota and the metabolic health of the host. Curr Opin Gastroen 30:120–127

    Article  CAS  Google Scholar 

  12. Clements KD, Angert ER, Montgomery WL, Choat JH (2014) Intestinal microbiota in fishes: what’s known and what’s not. Mol Ecol 23:1891–1898

    Article  PubMed  Google Scholar 

  13. Ray A, Ghosh K, Ringø E (2012) Enzyme‐producing bacteria isolated from fish gut: a review. Aquacult Nutr 18:465–492

    Article  CAS  Google Scholar 

  14. Muñoz-Atienza E, Gómez-Sala B, Araújo C, Campanero C, Del Campo R, Hernández PE, Herranz C, Cintas LM (2013) Antimicrobial activity, antibiotic susceptibility and virulence factors of lactic acid bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC Microbiol 13:15

    Article  PubMed  PubMed Central  Google Scholar 

  15. Geraylou Z, Souffreau C, Rurangwa E, De Meester L, Courtin CM, Delcour JA, Buyse J, Ollevier F (2013) Effects of dietary arabinoxylan-oligosaccharides (AXOS) and endogenous probiotics on the growth performance, non-specific immunity and gut microbiota of juvenile Siberian sturgeon (Acipenser baerii). Fish Shellfish Immun 35:766–775

    Article  CAS  Google Scholar 

  16. Pérez T, Balcázar J, Ruiz-Zarzuela I, Halaihel N, Vendrell D, De Blas I, Múzquiz J (2010) Host-microbiota interactions within the fish intestinal ecosystem. Mucosal Immunol 3:355–360

    Article  PubMed  Google Scholar 

  17. Cerezuela R, Fumanal M, Tapia-Paniagua ST, Meseguer J, Moriñigo MÁ, Esteban MÁ (2013) Changes in intestinal morphology and microbiota caused by dietary administration of inulin and Bacillus subtilis in gilthead sea bream (Sparus aurata L.) specimens. Fish Shellfish Immun 34:1063–1070

    Article  CAS  Google Scholar 

  18. Flint HJ, Duncan SH, Scott KP, Louis P (2014) Links between diet, gut microbiota composition and gut metabolism. P Nutr Soc. doi: 10.1017/S0029665114001463

  19. Abid A, Davies S, Waines P, Emery M, Castex M, Gioacchini G, Carnevali O, Bickerdike R, Romero J, Merrifield D (2013) Dietary synbiotic application modulates Atlantic salmon (Salmo salar) intestinal microbial communities and intestinal immunity. Fish Shellfish Immun 35:1948–1956

    Article  CAS  Google Scholar 

  20. Balcázar JL, Vendrell D, de Blas I, Ruiz-Zarzuela I, Muzquiz JL, Girones O (2008) Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish. Aquaculture 278:188–191

    Article  Google Scholar 

  21. Burr G, Gatlin D (2005) Microbial ecology of the gastrointestinal tract of fish and the potential application of prebiotics and probiotics in finfish aquaculture. J World Aquacult Soc 36:425–236

    Article  Google Scholar 

  22. Burrells C, Wiliams PD, Southgate PJ, Wadsworth SL (2001) Dietary nucleotides: a novel supplement in fish feeds 2. Effects on vaccination, salt water transfer, growth rates and physiology of Atlantic salmon (Salmo salar L.). Aquaculture 199:171–184

    Article  CAS  Google Scholar 

  23. Moldal T, Løkka G, Wiik-Nielsen J, Austbø L, Torstensen BE, Rosenlund G, Dale OB, Kaldhusdal M, Koppang EO (2014) Substitution of dietary fish oil with plant oils is associated with shortened mid intestinal folds in Atlantic salmon (Salmo salar). BMC Vet Res 10:60

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ringø E, Løvmo L, Kristiansen M, Bakken Y, Salinas I, Myklebust R, Olsen RE, Mayhew TM (2009) Lactic acid bacteria vs. pathogens in the gastrointestinal tract of fish: a review. Aquac Res 41:451–467

    Article  Google Scholar 

  25. Romarheim OH, Øverland M, Mydland LT, Skrede A, Landsverk T (2011) Bacteria grown on natural gas prevent soybean meal-induced enteritis in Atlantic salmon. J Nutr 141:124–130

    Article  CAS  PubMed  Google Scholar 

  26. Askarian F, Zhou Z, Olsen RE, Sperstad S, Ringø E (2012) Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterisation by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquaculture 326:1–8

    Article  Google Scholar 

  27. Korsnes K, Nicolaisen O, Skår CK, Nerland AH, Bergh Ø (2006) Bacteria in the gut of juvenile cod Gadus morhua fed live feed enriched with four different commercial diets. ICES J Mar Sci: J Conseil 263:296–301

    Article  Google Scholar 

  28. Kotzamanis Y, Gisbert E, Gatesoupe F, Zambonino Infante J, Cahu C (2007) Effects of different dietary levels of fish protein hydrolysates on growth, digestive enzymes, gut microbiota, and resistance to Vibrio anguillarum in European sea bass (Dicentrarchus labrax) larvae. Comp Biochem Physiol 147:205–214

    Article  CAS  Google Scholar 

  29. Landeira-Dabarca A, Sieiro C, Alvarez M (2013) Change in food ingestion induces rapid shifts in the diversity of microbiota associated with cutaneous mucus of Atlantic salmon Salmo salar. J Fish Biol 82:893–906

    Article  CAS  PubMed  Google Scholar 

  30. Ringø E, Olsen R (1999) The effect of diet on aerobic bacterial flora associated with intestine of Arctic charr (Salvelinus alpinus L.). J Appl Microbiol 86:22–28

    Article  PubMed  Google Scholar 

  31. Ringø E, Sperstad S, Myklebust R, Mayhew TM, Olsen RE (2006) The effect of dietary inulin on aerobic bacteria associated with hindgut of Arctic charr (Salvelinus alpinus L.). Aquac Res 37:891–897

    Article  Google Scholar 

  32. Ringø E, Sperstad S, Myklebust R, Refstie S, Krogdahl Å (2006) Characterisation of the microbiota associated with intestine of Atlantic cod (Gadus morhua L.): the effect of fish meal, standard soybean meal and a bioprocessed soybean meal. Aquaculture 261:829–841

    Article  Google Scholar 

  33. Bakke-McKellep AM, Penn MH, Salas PM, Refstie S, Sperstad S, Landsverk T, Ringo E, Krogdahl A (2007) Effects of dietary soya bean meal, inulin and oxytetracycline on intestinal microbiota and epithelial cell stress, apoptosis and proliferation in the teleost Atlantic salmon (Salmo salar L.). Brit J Nutr 97:699–713

    Article  CAS  PubMed  Google Scholar 

  34. Bakke-McKellep A, Refstie S, Cyrino J, Bureau D, Kapoor B (2008) Alternative protein sources and digestive function alterations in teleost fishes. In: Cyrino JEP, Roubach R, Bureau D, Kapoor BG (eds) Feeding and digestive functions of fishes. Science Publishers, Enfield, NH, USA, pp 440–472

    Google Scholar 

  35. Krogdahl Å, Penn M, Thorsen J, Refstie S, Bakke AM (2010) Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquac Res 41:333–344

    Article  CAS  Google Scholar 

  36. Sahlmann C, Sutherland BJ, Kortner TM, Koop BF, Krogdahl Å, Bakke AM (2013) Early response of gene expression in the distal intestine of Atlantic salmon (Salmo salar L.) during the development of soybean meal induced enteritis. Fish Shellfish Immun 34:599–609

    Article  CAS  Google Scholar 

  37. Refstie S, Glencross B, Landsverk T, Sørensen M, Lilleeng E, Hawkins W, Krogdahl Å (2006) Digestive function and intestinal integrity in Atlantic salmon (Salmo salar) fed kernel meals and protein concentrates made from yellow or narrow-leafed lupins. Aquaculture 261:1382–1395

    Article  CAS  Google Scholar 

  38. Hartviksen M, Bakke AM, Vecino JG, Ringø E, Krogdahl Å (2014) Evaluation of the effect of commercially available plant and animal protein sources in diets for Atlantic salmon (Salmo salar L.): digestive and metabolic investigations. Fish Physiol Biochem 40:1621–1637

    Article  CAS  PubMed  Google Scholar 

  39. Turner JW Jr, Nemeth R, Rogers C (2003) Measurement of fecal glucocorticoids in parrotfishes to assess stress. Gen Comp Endocr 133:341–352

    Article  CAS  PubMed  Google Scholar 

  40. Niklasson L, Sundh H, Olsen RE, Jutfelt F, Skjødt K, Nilsen TO, Sundell KS (2014) Effects of cortisol on the intestinal mucosal immune response during cohabitant challenge with IPNV in Atlantic salmon (Salmo salar). PLoS One 9, e94288

    Article  PubMed  PubMed Central  Google Scholar 

  41. Taylor RS, Muller WJ, Cook MT, Kube PD, Elliott NG (2009) Gill observations in Atlantic salmon (Salmo salar, L.) during repeated amoebic gill disease (AGD) field exposure and survival challenge. Aquaculture 290:1–8

    Article  Google Scholar 

  42. Holben W, Williams P, Saarinen M, Särkilahti L, Apajalahti J (2002) Phylogenetic analysis of intestinal microflora indicates a novel Mycoplasma phylotype in farmed and wild salmon. Microb Ecol 44:175–185

    Article  CAS  PubMed  Google Scholar 

  43. Hovda MB, Lunestad BT, Fontanillas R, Rosnes JT (2007) Molecular characterisation of the intestinal microbiota of farmed Atlantic salmon (Salmo salar L.). Aquaculture 272:581–588

    Article  CAS  Google Scholar 

  44. Soergel DA, Dey N, Knight R, Brenner SE (2012) Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. ISME J 6:1440–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dowd S, Callaway T, Wolcott R, Sun Y, McKeehan T, Hagevoort R, Edrington T (2008) Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 8:125

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lanzén A, Jørgensen SL, Bengtsson MM, Jonassen I, Øvreås L, Urich T (2011) Exploring the composition and diversity of microbial communities at the Jan Mayen hydrothermal vent field using RNA and DNA. FEMS Microbiol Ecol 77:577–589

    Article  PubMed  Google Scholar 

  47. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  48. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Anderson MJ, Connell SD, Gillanders BM, Diebel CE, Blom WM, Saunders JE, Landers TJ (2005) Relationships between taxonomic resolution and spatial scales of multivariate variation. J Anim Ecol 74:636–646

    Article  Google Scholar 

  50. Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511–525

    Article  Google Scholar 

  51. Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791

    Article  CAS  PubMed  Google Scholar 

  52. Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253

    Article  PubMed  Google Scholar 

  53. Spillman CM, Hobday AJ (2014) Dynamical seasonal ocean forecasts to aid salmon farm management in a climate hotspot. Climate Risk Management 1:25–38

    Article  Google Scholar 

  54. Hunt S, Simpson T, Wright R (1982) Seasonal changes in the levels of 11‐oxotestosterone and testosterone in the serum of male salmon, Salmo salar L., and their relationship to growth and maturation cycle. J Fish Biol 20:105–119

    Article  CAS  Google Scholar 

  55. Zarkasi KZ, Abell GC, Taylor RS, Neuman C, Hatje E, Tamplin ML, Katouli M, Bowman JP (2014) Pyrosequencing-based characterization of gastrointestinal bacteria of Atlantic salmon (Salmo salar L.) within a commercial mariculture system. J Appl Microbiol 117:18–27

    Article  CAS  PubMed  Google Scholar 

  56. Ratkowsky DA (2008) Tests for dispersion among macrofungal species assemblages. Australas Mycol 27:66–73

    Google Scholar 

  57. Krieg N (2011) Family IV. Porphyromonadaceae fam. nov. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (editors), Bergey’s Manual of Systematic Bacteriology, second edition, vol. 4 (The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes). New York: Springer, 61-65

  58. Dobson A, Cotter PD, Ross RP, Hill C (2012) Bacteriocin production: a probiotic trait? Appl Environ Microb 78:1–6

    Article  CAS  Google Scholar 

  59. Beaz-Hidalgo R, Doce A, Balboa S, Barja JL, Romalde JL (2010) Aliivibrio finisterrensis sp. nov., isolated from Manila clam, Ruditapes philippinarum and emended description of the genus Aliivibrio. Int J Syst Evol Micr 60:223–228

    Article  CAS  Google Scholar 

  60. Grammes F, Reveco FE, Romarheim OH, Landsverk T, Mydland LT, Øverland M (2013) Candida utilis and Chlorella vulgaris counteract intestinal inflammation in Atlantic salmon (Salmo salar L.). PLoS One 8, e83213

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tacchi L, Bickerdike R, Douglas A, Secombes CJ, Martin SA (2011) Transcriptomic responses to functional feeds in Atlantic salmon (Salmo salar). Fish Shellfish Immun 31:704–715

    Article  CAS  Google Scholar 

  62. Hamady M, Knight R (2009) Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res 19:1141–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Star B, Haverkamp TH, Jentoft S, Jakobsen KS (2013) Next generation sequencing shows high variation of the intestinal microbial species composition in Atlantic cod caught at a single location. BMC Microbiol 13:248

    Article  PubMed  PubMed Central  Google Scholar 

  64. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546

    Article  PubMed  Google Scholar 

  65. Ratkowsky D, Lowry R, McMeekin T, Stokes A, Chandler R (1983) Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol 154:1222–1226

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Soto W, Gutierrez J, Remmenga M, Nishiguchi M (2009) Salinity and temperature effects on physiological responses of Vibrio fischeri from diverse ecological niches. Microb Ecol 57:140–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen WL, Oliver JD, Wong HC (2010) Adaptation of Vibrio vulnificus and an rpoS mutant to bile salts. Int J Food Microbiol 140:232–238

    Article  CAS  PubMed  Google Scholar 

  68. Neuman C, Hatje E, Zarkasi KZ, Smullen R, Bowman JP, Katouli M (2014) The effect of diet and environmental temperature on the faecal microbiota of farmed Tasmanian Atlantic Salmon (Salmo salar L.). Aquac Res. doi: 10.1111/are.12522

  69. Hatje E, Neuman C, Stevenson H, Bowman JP, Katouli M (2014) Population dynamics of Vibrio and Pseudomonas species isolated from farmed Tasmanian Atlantic salmon (Salmo salar L.): a seasonal study. Microb Ecol 68:679–687

    Article  PubMed  Google Scholar 

  70. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dantas G, Sommer MO, Degnan PH, Goodman AL (2013) Experimental approaches for defining functional roles of microbes in the human gut. Annu Rev Microbiol 67:459–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Olsvik PA, Vikeså V, Lie KK, Hevrøy EM (2013) Transcriptional responses to temperature and low oxygen stress in Atlantic salmon studied with next-generation sequencing technology. BMC Genomics 14:817

    Article  PubMed  PubMed Central  Google Scholar 

  73. Pédron T, Mulet C, Dauga C, Frangeul L, Chervaux C, Grompone G, Sansonetti PJ (2012) A crypt-specific core microbiota resides in the mouse colon. MBio 3:e00116–00112

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ivanov II, Littman DR (2010) Segmented filamentous bacteria take the stage. Mucosal Immunol 3:209–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fuhrman JA, Cram JA, Needham DM (2015) Marine microbial community dynamics and their ecological interpretation. Nat Rev Immunol 38:1690–1711

    Google Scholar 

  76. He M, Tian G, Semenov AM, van Bruggen AH (2012) Short-term fluctuations of sugar beet damping-off by Pythium ultimum in relation to changes in bacterial communities after organic amendments to two soils. Phytopathology 102:413–420

    Article  PubMed  Google Scholar 

  77. Van Diepeningen AD, De Vos OJ, Zelenev VV, Semenov AM, Van Bruggen AH (2005) DGGE fragments oscillate with or counter to fluctuations in cultivable bacteria along wheat roots. Microb Ecol 50:506–517

    Article  PubMed  Google Scholar 

  78. Zelenev V, Van Bruggen A, Semenov A (2005) Short-term wavelike dynamics of bacterial populations in response to nutrient input from fresh plant residues. Microb Ecol 49:83–93

    Article  CAS  PubMed  Google Scholar 

  79. Zelenev V, Van Bruggen A, Leffelaar P, Bloem J, Semenov A (2006) Oscillating dynamics of bacterial populations and their predators in response to fresh organic matter added to soil: the simulation model ‘BACWAVE-WEB’. Soil Biol Biochem 38:1690–1711

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are extended to the Australian Seafood Cooperative Research Centre, Tassal Group and Skretting Australia for in-kind support and research funding (project 2011/701). The authors would also like to thank Dave Cameron for fish husbandry, Ben Maynard for assistance with research field sample preparation, Warren Muller for statistical advice on the cage trial and David Ratkowsky for statistical advice and discussions related to the experiments presented in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamarul Zaman Zarkasi.

Ethics declarations

Animal Ethics

All animal handling procedures were approved by the Tasmanian Department of Primary Industries, Parks, Water and Environment (DPIPWE) Animal Ethics Committee (Project 30/2009-10) under the guidelines of the Australian Code of Practice.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarkasi, K.Z., Taylor, R.S., Abell, G.C.J. et al. Atlantic Salmon (Salmo salar L.) Gastrointestinal Microbial Community Dynamics in Relation to Digesta Properties and Diet. Microb Ecol 71, 589–603 (2016). https://doi.org/10.1007/s00248-015-0728-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0728-y

Keywords

Navigation