Skip to main content
Log in

Temporal Dynamics of Active Prokaryotic Nitrifiers and Archaeal Communities from River to Sea

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

To test if different niches for potential nitrifiers exist in estuarine systems, we assessed by pyrosequencing the diversity of archaeal gene transcript markers for taxonomy (16S ribosomal RNA (rRNA)) during an entire year along a salinity gradient in surface waters of the Charente estuary (Atlantic coast, France). We further investigated the potential for estuarine prokaryotes to oxidize ammonia and hydrolyze urea by quantifying thaumarchaeal amoA and ureC and bacterial amoA transcripts. Our results showed a succession of different nitrifiers from river to sea with bacterial amoA transcripts dominating in the freshwater station while archaeal transcripts were predominant in the marine station. The 16S rRNA sequence analysis revealed that Thaumarchaeota marine group I (MGI) were the most abundant overall but other archaeal groups like Methanosaeta were also potentially active in winter (December–March) and Euryarchaeota marine group II (MGII) were dominant in seawater in summer (April–August). Each station also contained different Thaumarchaeota MGI phylogenetic clusters, and the clusters’ microdiversity was associated to specific environmental conditions suggesting the presence of ecotypes adapted to distinct ecological niches. The amoA and ureC transcript dynamics further indicated that some of the Thaumarchaeota MGI subclusters were involved in ammonia oxidation through the hydrolysis of urea. Our findings show that ammonia-oxidizing Archaea and Bacteria were adapted to contrasted conditions and that the Thaumarchaeota MGI diversity probably corresponds to distinct metabolisms or life strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Auguet JC, Casamayor EO (2008) A hotspot for cold Crenarchaeota in the neuston of high mountain lakes. Environ Microbiol 10:1080–1086

    Article  CAS  PubMed  Google Scholar 

  3. Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K et al (2006) Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol 4:e95

    Article  PubMed Central  PubMed  Google Scholar 

  4. Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP et al (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic Crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995

    Article  CAS  PubMed  Google Scholar 

  5. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  CAS  PubMed  Google Scholar 

  6. Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB et al (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  PubMed  Google Scholar 

  7. Galand PE, Gutierrez-Provecho C, Massana R, Gasol J, Casamayor EO (2010) Inter-annual recurrence of archaeal assemblages in the coastal NW Mediterranean Sea. Limnol Oceanogr 55:2117–2125

    Article  Google Scholar 

  8. Mincer TJ, Church MJ, Taylor LT, Preston C, Karl DM et al (2007) Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environ Microbiol 9:1162–1175

    Article  CAS  PubMed  Google Scholar 

  9. Hugoni M, Etien S, Bourges A, Lepere C, Domaizon I et al (2013) Dynamics of ammonia-oxidizing Archaea and Bacteria in contrasted freshwater ecosystems. Res Microbiol 164:360–370

    Article  CAS  PubMed  Google Scholar 

  10. Vissers EW, Anselmetti FS, Bodelier PL, Muyzer G, Schleper C et al (2013) Temporal and spatial coexistence of archaeal and bacterial amoA genes and gene transcripts in Lake Lucerne. Archaea 2013:289478

    Article  PubMed Central  PubMed  Google Scholar 

  11. Beman JM, Popp BN, Francis CA (2008) Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. ISME J 2:429–441

    Article  CAS  PubMed  Google Scholar 

  12. Magalhães C, Machado A, Bordalo A (2009) Temporal variability in the abundance of ammonia oxidizing Bacteria vs. Archaea in sandy sediments of the Douro River estuary, Portugal. Aquat Microb Ecol 56:13–23

    Article  Google Scholar 

  13. Mosier AC, Francis CA (2008) Relative abundance and diversity of ammonia-oxidizing Archaea and Bacteria in the San Francisco Bay estuary. Environ Microbiol 10:3002–3016

    Article  CAS  PubMed  Google Scholar 

  14. Santoro AE, Francis CA, de Sieyes NR, Boehm AB (2008) Shifts in the relative abundance of ammonia-oxidizing Bacteria and Archaea across physicochemical gradients in a subterranean estuary. Environ Microbiol 10:1068–1079

    Article  CAS  PubMed  Google Scholar 

  15. Bernhard AE, Bollmann A (2010) Estuarine nitrifiers: new players, patterns and processes. Estuar Coast Shelf Sci 88:1–11

    Article  CAS  Google Scholar 

  16. Auguet JC, Triado-Margarit X, Nomokonova N, Camarero L, Casamayor EO (2012) Vertical segregation and phylogenetic characterization of ammonia-oxidizing Archaea in a deep oligotrophic lake. ISME J 6:1786–1797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H et al (2014) Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proc Natl Acad Sci U S A 111:12504–12509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Alonso-Saez L, Waller AS, Mende DR, Bakker K, Farnelid H et al (2012) Role for urea in nitrification by polar marine Archaea. Proc Natl Acad Sci U S A 109:17989–17994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N et al (2010) Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine Crenarchaea. Proc Natl Acad Sci U S A 107:8818–8823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Pedneault E, Galand PE, Potvin M, Tremblay JE, Lovejoy C (2014) Archaeal amoA and ureC genes and their transcriptional activity in the Arctic Ocean. Sci Rep 4:4661

    Article  PubMed Central  PubMed  Google Scholar 

  21. Beam JP, Jay ZJ, Kozubal MA, Inskeep WP (2014) Niche specialization of novel Thaumarchaeota to oxic and hypoxic acidic geothermal springs of Yellowstone National Park. ISME J 8:938–951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Konneke M, Schubert DM, Brown PC, Hugler M, Standfest S et al (2014) Ammonia-oxidizing Archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proc Natl Acad Sci U S A 111:8239–8244

    Article  PubMed Central  PubMed  Google Scholar 

  23. Herlemann DP, Labrenz M, Jurgens K, Bertilsson S, Waniek JJ et al (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571–1579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kirchman DL, Dittel AI, Malmstrom RR, Cottrell MT (2005) Biogeography of major bacterial groups in the Delaware Estuary. Limnol Oceanogr 50:1697–1706

    Article  CAS  Google Scholar 

  25. Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci U S A 104:11436–11440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Auguet JC, Barberan A, Casamayor EO (2009) Global ecological patterns in uncultured Archaea. ISME J 4:182–190

    Article  PubMed  Google Scholar 

  27. Bernhard AE, Tucker J, Giblin AE, Stahl DA (2007) Functionally distinct communities of ammonia-oxidizing bacteria along an estuarine salinity gradient. Environ Microbiol 9:1439–1447

    Article  CAS  PubMed  Google Scholar 

  28. Santoro AE, Casciotti K, Francis CA (2010) Activity, abundance and diversity of nitrifying Archaea and Bacteria in the central California Current. Environ Microbiol Rep 12:1989–2006

    Article  CAS  Google Scholar 

  29. Galand PE, Lovejoy C, Pouliot J (2008) Microbial community diversity and heterotrophic production in a coastal Arctic ecosystem: a Stamukhi lake and its source waters. Limnol Oceanogr 53:813–823

    Article  Google Scholar 

  30. Galand PE, Lovejoy C, Vincent WF (2006) Remarkably diverse and contrasting archaeal communities in a large arctic river and the coastal Arctic Ocean. Aquat Microb Ecol 44:115–126

    Article  Google Scholar 

  31. Herfort L, Kim JH, Coolen MJL, Abbas B, Schouten S et al (2009) Diversity of Archaea and detection of crenarchaeotal amoA genes in the river Rhine and Têt. Aquat Microb Ecol 55:189–201

    Article  Google Scholar 

  32. Alonso-Saez L, Balague V, Sa EL, Sanchez O, Gonzalez JM et al (2007) Seasonality in bacterial diversity in north-west Mediterranean coastal waters: assessment through clone libraries, fingerprinting and FISH. FEMS Microbiol Ecol 60:98–112

    Article  CAS  PubMed  Google Scholar 

  33. Mary I, Cummings DG, Biegala IC, Burkill PH, Archer SD et al (2006) Seasonal dynamics of bacterioplankton community structure at a coastal station in the western English Channel. Aquat Microb Ecol 42:119–126

    Article  Google Scholar 

  34. Campbell BJ, Yu L, Heidelberg JF, Kirchman DL (2011) Activity of abundant and rare Bacteria in a coastal ocean. Proc Natl Acad Sci U S A 108:12776–12781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Hugoni M, Taib N, Debroas D, Domaizon I, Jouan Dufournel I et al (2013) Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters. Proc Natl Acad Sci U S A 110:6004–6009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Lorenzen CJ (1967) Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol Oceanogr 12:343–346

    Article  CAS  Google Scholar 

  37. Strickland J, Parsons T (1968) A practical handbook of sea water analysis

  38. Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

  39. Takai K, Horikoshi K (2000) Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66:5066–5072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kim M, Morrison M, Yu Z (2011) Evaluation of different partial 16S rRNA gene sequence regions for phylogenetic analysis of microbiomes. J Microbiol Methods 84:81–87

    Article  CAS  PubMed  Google Scholar 

  41. Taib N, Mangot JF, Domaizon I, Bronner G, Debroas D (2013) Phylogenetic affiliation of SSU rRNA genes generated by massively parallel sequencing: new insights into the freshwater protist diversity. PLoS ONE 8:e58950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Edgar RC (2004) Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing Archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102:14683–14688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  47. Massana R, DeLong EF, Pedros-Alio C (2000) A few cosmopolitan phylotypes dominate planktonic archaeal assemblages in widely different oceanic provinces. Appl Environ Microbiol 66:1777–1787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Abell GC, Revill AT, Smith C, Bissett AP, Volkman JK et al (2010) Archaeal ammonia oxidizers and nirS-type denitrifiers dominate sediment nitrifying and denitrifying populations in a subtropical macrotidal estuary. ISME J 4:286–300

    Article  CAS  PubMed  Google Scholar 

  49. Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461:976–979

    Article  CAS  PubMed  Google Scholar 

  50. Winter C, Bouvier T, Weinbauer MG, Thingstad TF (2010) Trade-offs between competition and defense specialists among unicellular planktonic organisms: the “killing the winner” hypothesis revisited. Microbiol Mol Biol Rev 74:42–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Sintes E, Bergauer K, De Corte D, Yokokawa T, Herndl GJ (2013) Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean. Environ Microbiol 15:1647–1658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Auguet JC, Casamayor EO (2013) Partitioning of Thaumarchaeota populations along environmental gradients in high mountain lakes. FEMS Microbiol Ecol 84:154–164

    Article  CAS  PubMed  Google Scholar 

  53. Restrepo-Ortiz CX, Auguet JC, Casamayor EO (2013) Targeting spatiotemporal dynamics of planktonic SAGMGC-1 and segregation of ammonia-oxidizing thaumarchaeota ecotypes by newly designed primers and quantitative polymerase chain reaction. Environ Microbiol 16:689–700

    Article  PubMed  Google Scholar 

  54. Mußmann M, Brito I, Pitcher A, Sinninghe Damste JS, Hatzenpichler R et al (2011) Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. Proc Natl Acad Sci U S A 108:16771–16776

    Article  PubMed Central  PubMed  Google Scholar 

  55. Pester M, Rattei T, Flechl S, Grongroft A, Richter A et al (2011) amoA-based consensus phylogeny of ammonia-oxidizing Archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ Microbiol 14:525–539

    Article  PubMed  Google Scholar 

  56. Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132:652–661

    Article  Google Scholar 

  57. Barberan A, Fernandez-Guerra A, Auguet JC, Galand PE, Casamayor EO (2011) Phylogenetic ecology of widespread uncultured clades of the kingdom Euryarchaeota. Mol Ecol 20:1988–1996

    Article  PubMed  Google Scholar 

  58. Frigaard NU, Martinez A, Mincer TJ, DeLong EF (2006) Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature 439:847–850

    Article  CAS  PubMed  Google Scholar 

  59. Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL et al (2012) Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota. Science 335:587–590

    Article  CAS  PubMed  Google Scholar 

  60. Meng J, Xu J, Qin D, He Y, Xiao X et al (2014) Genetic and functional properties of uncultivated MCG Archaea assessed by metagenome and gene expression analyses. ISME J 8:650–659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Webster G, O’Sullivan LA, Meng Y, Williams AS, Sass AM et al (2015) Archaeal community diversity and abundance changes along a natural salinity gradient in estuarine sediments. FEMS Microbiol Ecol 91:1–18

    Article  PubMed Central  PubMed  Google Scholar 

  62. Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M et al (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci U S A 103:2815–2820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Singh SK, Verma P, Ramaiah N, Chandrashekar AA, Shouche YS (2010) Phylogenetic diversity of archaeal 16S rRNA and ammonia monooxygenase genes from tropical estuarine sediments on the central west coast of India. Res Microbiol 161:177–186

    Article  CAS  PubMed  Google Scholar 

  64. Lloyd KG, Schreiber L, Petersen DG, Kjeldsen KU, Lever MA et al (2013) Predominant Archaea in marine sediments degrade detrital proteins. Nature 496:215–218

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank P. Pineau, N. Lachaussée, M. Breret, F. Mornet, L. Beaugeard, J. Lavaud, and J. Jourde for the sampling. We thank A. Vellet, I. Louati, M. Breret, and C. Lavergne for their technical support during the experimentations and J.C. Auguet for providing us the map of the sampling location of the stations. This work was supported by a CNRS Program Ecosphère Continentale et Côtière (EC2CO, 2010–2012). The work of PE Galand was supported by the Agence Nationale de la Recherche (ANR) project MICADO (ANR-11JSV7-003-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Mary.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Box plot of Shannon index from the three different sampling stations. A significant difference in diversity between two stations is marked with a star (*, p < 0.008) (GIF 23 kb)

Supplementary Figure 2

Ordination diagram from CCA of major active archaeal groups compared with environmental data (GIF 28 kb)

ESM 3

(TIFF 25480 kb)

ESM 4

(TIFF 25480 kb)

Supplementary Table 1

Quality checked (QC) and Archaea affiliated sequences obtained for each sample from surface water collected monthly in the Charente estuary. Environmental parameters (temperature, salinity, pH, and Chla, ammonia and phosphates concentrations) associated to each point are presented. ND: not determined (XLS 43 kb)

Supplementary Table 2

Mean number of 16S rRNA sequences associated with each abundant OTU retrieved in the freshwater, mesohaline, and marine stations. ND: not determined (XLS 32 kb)

Supplementary Table 3

Monthly community structure at the subcluster level in Thaumarchaeota MGI. Number of OTUs were presented for each subgroup and number of sequences between brackets. ND: not determined (XLS 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hugoni, M., Agogué, H., Taib, N. et al. Temporal Dynamics of Active Prokaryotic Nitrifiers and Archaeal Communities from River to Sea. Microb Ecol 70, 473–483 (2015). https://doi.org/10.1007/s00248-015-0601-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0601-z

Keywords

Navigation