Skip to main content

Advertisement

Log in

Top-Down Control of Diesel-Degrading Prokaryotic Communities

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Biostimulation through the addition of inorganic nutrients has been the most widely practiced bioremediation strategy in oil-polluted marine waters. However, little attention has so far been paid to the microbial food web and the impact of top-down control that directly or indirectly influences the success of the bioremediation. We designed a mesocosm experiment using pre-filtered (<50 μm) surface seawater from the Bay of Banyuls-sur-Mer (North-Western Mediterranean Sea) and examined the top-down effect exerted by heterotrophic nanoflagellates (HNF) and virus-like particles (VLP) on prokaryotic abundance, activity and diversity in the presence or absence of diesel fuel. Prokaryotes, HNF and VLP abundances showed a predator–prey succession, with a co-development of HNF and VLP. In the polluted system, we observed a stronger impact of viral lysis on prokaryotic abundances than in the control. Analysis of the diversity revealed that a bloom of Vibrio sp. occurred in the polluted mesocosm. That bloom was rapidly followed by a less abundant and more even community of predation-resistant bacteria, including known hydrocarbon degraders such as Oleispira spp. and Methylophaga spp. and opportunistic bacteria such as Percisivirga spp., Roseobacter spp. and Phaeobacter spp. The shift in prokaryotic dominance in response to viral lysis provided clear evidence of the ‘killing the winner’ model. Nevertheless, despite clear effects on prokaryotic abundance, activity and diversity, the diesel degradation was not impacted by top-down control. The present study investigates for the first time the functioning of a complex microbial network (including VLP) using a nutrient-based biostimulation strategy and highlights some key processes useful for tailoring bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Röling WFM, Milner MG, Jones DM, Fratepietro F, Swannell RPJ, Daniel F, Head IM (2004) Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl Environ Microbiol 70:2603

    Article  PubMed Central  PubMed  Google Scholar 

  2. Swannell RP, Lee K, McDonagh M (1996) Field evaluations of marine oil spill bioremediation. Microbiol Mol Biol Rev 60:342–365

    CAS  Google Scholar 

  3. Prince RC (1993) Petroleum spill bioremediation in marine environments. Crit Rev Microbiol 19:217–240

    Article  CAS  PubMed  Google Scholar 

  4. Thingstad TF, Lignell R (1997) Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat Microb Ecol 13:19–27

    Article  Google Scholar 

  5. Ubalua AO (2011) Bioremediation strategies for oil polluted marine ecosystems. Aust J Agr Eng 2:160–168

    Google Scholar 

  6. Bragg JR, Prince RC, Harner EJ, Atlas RM (1994) Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368:413–418

    Article  CAS  Google Scholar 

  7. Dyksterhouse SE, Gray JP, Herwig RP, Lara J, Staley JT (1995) Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123

    Article  CAS  PubMed  Google Scholar 

  8. Yakimov MM, Golyshin PN, Lang S, Moore ERB, Abraham WR, Lünsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348

    Article  CAS  PubMed  Google Scholar 

  9. Rodriguez-Blanco A, Vetion G, Escande ML, Delille D, Ghiglione JF (2010) Gallaecimonas pentaromativorans gen. nov., sp. nov., a bacterium carrying 16S rRNA gene heterogeneity and able to degrade high-molecular-mass polycyclic aromatic hydrocarbons. Int J Syst Evol Micr 60:504–509

    Article  CAS  Google Scholar 

  10. Grimaud R, Ghiglione J-F, Cagnon C, Lauga B, Vaysse P-J, Rodriguez-Blanco A, Mangenot S, Cruveiller S, Barbe V, Duran R (2012) Genome sequence of the marine bacterium Marinobacter hydrocarbonoclasticus SP17, which forms biofilms on hydrophobic organic compounds. J Bacteriol 194:3539–3540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Head IM, Swannell RPJ (1999) Bioremediation of petroleum hydrocarbon contaminants in marine habitats. Curr Opin Biotech 10:234–239

    Article  CAS  PubMed  Google Scholar 

  12. Golyshin PN, Chernikova TN, Abraham WR (2002) Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Micr 52:901–911

    Article  CAS  Google Scholar 

  13. Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham WR, Lünsdorf H, Timmis KN, Golyshin PN (2003) Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Micr 53:779–785

    Article  CAS  Google Scholar 

  14. Ghiglione J, Murray A (2012) Pronounced summer to winter differences and higher wintertime richness in coastal Antarctic marine bacterioplankton. Environ Microbiol 14:617–629

    Article  CAS  PubMed  Google Scholar 

  15. Yakimov MM, Giuliano L, Denaro R, Crisafi E, Chernikova TN, Abraham W-R, Luensdorf H, Timmis KN, Golyshin PN (2004) Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Micr 54:141–148

    Article  CAS  Google Scholar 

  16. Head IM, Jones DM, Röling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182

    Article  CAS  PubMed  Google Scholar 

  17. Röling WFM, Milner MG, Jones DM, Lee K, Daniel F, Swannell RJP, Head IM (2002) Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68:5537–5548

    Article  PubMed Central  PubMed  Google Scholar 

  18. Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotech 18:257–266

    Article  CAS  PubMed  Google Scholar 

  19. Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45:180–209

    CAS  PubMed Central  PubMed  Google Scholar 

  20. McKew BA, Coulon F, Osborn AM, Timmis KN, McGenity TJ (2007) Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary, UK. Environ Microbiol 9:165–176

    Article  CAS  PubMed  Google Scholar 

  21. Gertler C, Gerdts G, Timmis KN, Yakimov MM, Golyshin PN (2009) Populations of heavy fuel oil-degrading marine microbial community in presence of oil sorbent materials. J Appl Microbiol 107:590–605

    Article  CAS  PubMed  Google Scholar 

  22. Weinbauer MG, Fuks D, Peduzzi P (1993) Distribution of viruses and dissolved DNA along a coastal trophic gradient in the northern Adriatic Sea. Appl Environ Microbiol 59:4074–4082

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Wilhelm SW, Suttle CA (1999) Viruses and nutrient cycles in the sea. Bioscience 49:781–788

    Article  Google Scholar 

  24. Bouvier T, Del Giorgio PA (2007) Key role of selective viral induced mortality in determining marine bacterial community composition. Environ Microbiol 9:287–297

    Article  CAS  PubMed  Google Scholar 

  25. Jurgens K, Pernthaler J, Schalla S, Amann R (1999) Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing. Appl Environ Microbiol 65:1241–1250

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Pernthaler J (2005) Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol 3:537–546

    Article  CAS  PubMed  Google Scholar 

  27. Gonzalez JM, Sherr EB, Sherr BF (1990) Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl Environ Microbiol 56:583–589

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Weinbauer MG, Rassoulzadegan F (2004) Are viruses driving microbial diversification and diversity? Environ Microbiol 6:1–11

    Article  PubMed  Google Scholar 

  29. Beardsley C, Pernthaler J, Wosniok W, Amann R (2003) Are readily culturable bacteria in coastal North Sea waters suppressed by selective grazing mortality? Appl Environ Microbiol 69:2624–2630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Thingstad TF (2000) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr 45:1320–1328

    Article  Google Scholar 

  31. del Giorgio PA, Gasol JM, Vaqué D, Mura P, Agustí S, Duarte CM (1996) Bacterioplankton community structure: protists control net production and the proportion of active bacteria in a coastal marine community. Limnol Oceanogr 41:1169–1179

    Article  Google Scholar 

  32. Hahn MW, Höfle MG (2001) Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol Ecol 35:113–121

    Article  CAS  PubMed  Google Scholar 

  33. Mattison RG, Taki H, Harayama S (2005) The soil flagellate Heteromita globosa accelerates bacterial degradation of alkylbenzenes through grazing and acetate excretion in batch culture. Microb Ecol 49:142–150

    Article  CAS  PubMed  Google Scholar 

  34. Tso SF, Taghon GL (2006) Protozoan grazing increases mineralization of naphthalene in marine sediment. Microb Ecol 51:460–469

    Article  CAS  PubMed  Google Scholar 

  35. Tréguer P, Le Corre P (1975) Manuel d’analyse des sels nutritifs dans l’eau de mer. Laboratoire d’Océanographie Chimique, Université de Bretagne Occidentale, Brest 110

  36. Pujo-Pay M, Conan P, Oriol L, Cornet-Barthaux V, Falco C, Ghiglione JF, Goyet C, Moutin T, Prieur L (2011) Integrated survey of elemental stoichiometry (C, N, P) from the western to eastern Mediterranean Sea. Biogeosciences 8:883–899

    Article  CAS  Google Scholar 

  37. Smith VH, Graham DW, Cleland DD (1998) Application of resource-ratio theory to hydrocarbon biodegradation. Environ Sci Technol 32:3386–3395

    Article  CAS  Google Scholar 

  38. Tedetti M, Guigue C, Goutx M (2010) Utilization of a submersible UV fluorometer for monitoring anthropogenic inputs in the Mediterranean coastal waters. Marine Pollut Bull 60:350–362

    Article  CAS  Google Scholar 

  39. Mével G, Vernet M, Goutx M, Ghiglione JF (2008) Seasonal to hour variation scales in abundance and production of total and particle-attached bacteria in the open NW Mediterranean Sea (0–1000 m). Biogeosciences 5:1573–1586

    Article  Google Scholar 

  40. Noble RT, Fuhrman JA (1998) Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol 14:113–118

    Article  Google Scholar 

  41. Ghiglione JF, Conan P, Pujo-Pay M (2009) Diversity of total and active free-living vs. particle-attached bacteria in the euphotic zone of the NW Mediterranean Sea. FEMS Microbiol Lett 299:9–21

    Article  CAS  PubMed  Google Scholar 

  42. Abboudi M, Jeffrey WH, Ghiglione JF, Pujo-Pay M, Oriol L, Sempéré R, Charrière B, Joux F (2008) Effects of photochemical transformations of dissolved organic matter on bacterial metabolism and diversity in three contrasting coastal sites in the Northwestern Mediterranean Sea during summer. Microb Ecol 55:344–357

    Article  CAS  PubMed  Google Scholar 

  43. Ortega-Retuerta E, Joux F, Jeffrey WH, Ghiglione JF (2012) Spatial variability of particle-attached and free-living bacterial diversity in surface waters from the Mackenzie river to the beaufort Sea (Canadian arctic). Biogeosci Discuss 9:17401–17435

    Article  Google Scholar 

  44. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (2011) Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12:38

    Article  PubMed Central  PubMed  Google Scholar 

  46. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  47. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Hoppe HG (1983) Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar Ecol Prog Ser 11:299–308

    Article  CAS  Google Scholar 

  49. Landry M, Hassett R (1982) Estimating the grazing impact of marine micro-zooplankton. Mar Biol 67:283–288

    Article  Google Scholar 

  50. Verity P, Redalje D, Lohrenz S, Flagg C, Hristov R (2002) Coupling between primary production and pelagic consumption in temperate ocean margin pelagic ecosystems. Deep Sea Res Pt II 49:4553–4569

    Article  CAS  Google Scholar 

  51. Proctor LM, Okubo A, Fuhrman JA (1993) Calibrating estimates of phage-induced mortality in marine bacteria: ultrastructural studies of marine bacteriophage development from one-step growth experiments. Microb Ecol 25:161–182

    Article  CAS  PubMed  Google Scholar 

  52. Binder B (1999) Reconsidering the relationship between virally induced bacterial mortality and frequency of infected cells. Aquat Microb Ecol 18:207–215

    Article  Google Scholar 

  53. d’Ortenzio F, Ribera d’Alcalà M (2009) On the trophic regimes of the Mediterranean Sea: a satellite analysis. Biogeosciences 6:139–148

    Article  Google Scholar 

  54. Gertler C, Näther DJ, Cappello S, Gerdts G, Quilliam RS, Yakimov MM, Golyshin PN (2012) Composition and dynamics of biostimulated indigenous oil-degrading microbial consortia from the Irish, North and Mediterranean Seas: a mesocosm study. FEMS Microbiol Ecol 81:520–536

    Article  CAS  PubMed  Google Scholar 

  55. Kasai Y, Kishira H, Sasaki T, Syutsubo K, Watanabe K, Harayama S (2002) Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environ Microbiol 4:141–147

    Article  CAS  PubMed  Google Scholar 

  56. Van Wambeke F, Ghiglione JF, Nedoma J, Mével G, Raimbault P (2009) Bottom up effects on bacterioplankton growth and composition during summer-autumn transition in the open NW Mediterranean Sea. Biogeosciences 6:705–720

    Article  Google Scholar 

  57. Rodríguez-Blanco A, Antoine V, Pelletier E, Delille D, Ghiglione JF (2010) Effects of temperature and fertilization on total vs. active bacterial communities exposed to crude and diesel oil pollution in NW Mediterranean Sea. Environ Poll 158:663–673

    Article  Google Scholar 

  58. Sauret C, Christaki U, Moutsaki P, Hatzianestis I, Gogou A, Ghiglione J-F (2012) Influence of pollution history on the response of coastal bacterial and nanoeukaryote communities to crude oil and biostimulation assays. Mar Environ Res 79:70–78

    Article  CAS  PubMed  Google Scholar 

  59. Atlas RM, Bartha R (1972) Degradation and mineralization of petroleum in seawater: limitation by nitrogen and phosphorus. Biotechnol Bioeng 14:309–317

    Article  CAS  PubMed  Google Scholar 

  60. Øvreas L, Bourne D, Sandaa R-A, Casamayor EO, Benlloch S, Goddard V, Smerdon G, Heldal M, Thingstad TF (2003) Response of bacterial and viral communities to nutrient manipulations in seawater mesocosms. Aquat Microb Ecol 31:109–121

    Article  Google Scholar 

  61. Al-Mallah M, Goutx M, Mille G, Bertrand JC (1990) Production of emulsifying agents during growth of a marine Alteromonas in sea water with eicosane as carbon source, a solid hydrocarbon. Oil Chem Pollut 6:289–305

    Article  CAS  Google Scholar 

  62. Gertler C, Gerdts G, Timmis KN, Golyshin PN (2009) Microbial consortia in mesocosm bioremediation trial using oil sorbents, slow-release fertilizer and bioaugmentation. FEMS Microbiol Ecol 69:288–300

    Article  CAS  PubMed  Google Scholar 

  63. Hedlund BP, Staley JT (2006) Isolation and characterization of Pseudoalteromonas strains with divergent polycyclic aromatic hydrocarbon catabolic properties. Environ Microbiol 8:178–182

    Article  CAS  PubMed  Google Scholar 

  64. Bordenave S, Goñi-Urriza MS, Caumette P, Duran R (2007) Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat. Appl Environ Microbiol 73:6089–6097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Cappello S, Caruso G, Zampino D, Monticelli L, Maimone G, Denaro R, Tripodo B, Troussellier M, Yakimov M, Giuliano L (2007) Microbial community dynamics during assays of harbour oil spill bioremediation: a microscale simulation study. J Appl Microbiol 102:184–194

    Article  CAS  PubMed  Google Scholar 

  66. Coulon F, McKew BA, Osborn AM, McGenity TJ, Timmis KN (2007) Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Environ Microbiol 9:177–186

    Article  CAS  PubMed  Google Scholar 

  67. Riemann L, Middelboe M (2002) Viral lysis of marine bacterioplankton: implications for organic matter cycling and bacterial clonal composition. Ophelia 56:57–68

    Article  Google Scholar 

  68. Toyoda K, Shibata A, Wada M, Nishimura M, Nomura H, Yoshida A, Okamoto K, Yamada M, Takada H, Kogure K (2005) Trophic interactions among marine microbes in oil-contaminated seawater on a mesocosmic scale. Microbes Environ 20:104–109

    Article  Google Scholar 

  69. Ortmann AC, Anders J, Shelton N, Gong L, Moss AG, Condon RH (2012) Dispersed oil disrupts microbial pathways in pelagic food webs. PLoS One 7:e42548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Miki T, Jacquet S (2008) Complex interactions in the microbial world: underexplored key links between viruses, bacteria and protozoan grazers in aquatic environments. Aquat Microb Ecol 51:195–208

    Article  Google Scholar 

  71. Kota S, Borden RC, Barlaz MA (1999) Influence of protozoan grazing on contaminant biodegradation. FEMS Microbiol Ecol 29:179–189

    Article  CAS  Google Scholar 

  72. Rosenberg E, Bittan Banin G, Sharon G, Shon A, Hershko G, Levy I, Ron EZ (2010) The phage driven microbial loop in petroleum bioremediation. Microb Biotechnol 3:467–472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Guenet B, Danger M, Abbadie L, Lacroix G (2010) Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology 91:2850–2861

    Article  PubMed  Google Scholar 

  74. Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843

    Article  CAS  Google Scholar 

  75. Fuhrman JA, Suttle CA (1993) Viruses in marine planktonic systems. Oceanography 6:51–63

    Article  Google Scholar 

  76. Thingstad TF, Heldal M, Bratbak G, Dundas I (1993) Are viruses important partners in pelagic fend webs? Trends Ecol Evol 8:209–213

    Article  CAS  PubMed  Google Scholar 

  77. Lenski RE (1988) Dynamics of interactions between bacteria and virulent bacteriophage. In: Adv Microb Ecol. Springer, pp 1–44

  78. Middelboe M (2000) Bacterial growth rate and marine virus–host dynamics. Microb Ecol 40:114–124

    PubMed  Google Scholar 

  79. Golyshin PN, Ferrer M, Chernikova TN, Golyshina OV, Yakimov MM (eds) (2010) Oleispira, vol Part 19. Handb Hydrocarb Lipid Microbiol. Springer, Verlag Berlin Heidelberg

  80. Mishamandani S, Gutierrez T, Aitken MD (2014) DNA-based stable isotope probing coupled with cultivation methods implicates Methylophaga in hydrocarbon degradation. Frontiers Microbiol 5:76

    Article  Google Scholar 

  81. Kirchman DL (2002) The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was part of the IBISCUS project, funded by the Continental and Coastal Ecosphere (EC2CO) program from the Centre National de la Recherche Scientifique (CNRS) and Institut des Sciences de l’Univers (INSU). We would like to thank C. Aria-Casters and M.P.A. Guigui for their contributions to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Ghiglione.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

(PDF 67 kb)

Supplemental Figure 2

(PDF 54 kb)

Supplemental Figure 3

(PDF 152 kb)

Supplemental Table 1

(DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sauret, C., Böttjer, D., Talarmin, A. et al. Top-Down Control of Diesel-Degrading Prokaryotic Communities. Microb Ecol 70, 445–458 (2015). https://doi.org/10.1007/s00248-015-0596-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0596-5

Keywords

Navigation