Skip to main content
Log in

Characterization of Beta-lactamases in Faecal Enterobacteriaceae Recovered from Healthy Humans in Spain: Focusing on AmpC Polymorphisms

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The intestinal tract is a huge reservoir of Enterobacteriaceae, some of which are opportunist pathogens. Several genera of these bacteria harbour intrinsic antibiotic resistance genes, such as ampC genes in species of Citrobacter, Enterobacter or Escherichia genera. In this work, beta-lactamases and other resistance mechanisms have been characterized in Enterobacteriaceae isolates recovered from healthy human faecal samples, focusing on the ampC beta-lactamase genes. Fifty human faecal samples were obtained, and 70 Enterobacteriaceae bacteria were isolated: 44 Escherichia coli, 4 Citrobacter braakii, 9 Citrobacter freundii, 8 Enterobacter cloacae, 1 Proteus mirabilis, 1 Proteus vulgaris, 1 Klebsiella oxytoca, 1 Serratia sp. and 1 Cronobacter sp. A high percentage of resistance to ampicillin was detected (57 %), observing the AmpC phenotype in 22 isolates (31 %) and the ESBL phenotype in 3 isolates. AmpC molecular characterization showed high diversity into bla CMY and bla ACT genes from Citrobacter and Enterobacter species, respectively, and the pulsed-field gel electrophoresis (PFGE) analysis demonstrated low clonality among them. The prevalence of people colonized by strains carrying plasmid-mediated ampC genes obtained in this study was 2 %. The unique plasmid-mediated bla AmpC identified in this study was the bla CMY-2 gene, detected in an E. coli isolate ascribed to the sequence type ST405 which belonged to phylogenetic group D. The hybridization and conjugation experiments demonstrated that the ISEcp1-bla CMY-2-blc structure was carried by a ~78-kb self-transferable IncK plasmid. This study shows a high polymorphism among beta-lactamase genes in Enterobacteriaceae from healthy people microbiota. Extensive AmpC-carrier studies would provide important information and could allow the anticipation of future global health problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sommer MOA, Dantas G (2011) Antibiotics and the resistant microbiome. Curr Opin Microbiol 14:556–563

    Article  CAS  PubMed  Google Scholar 

  2. Rolain JM (2013) Food and human gut as reservoirs of transferable antibiotic resistance encoding genes. Front Microbiol 4:173

    Article  PubMed Central  PubMed  Google Scholar 

  3. Allen HK, Trachsel J, Looft T, Casey TA (2014) Finding alternatives to antibiotics. Ann N Y Acad Sci. 1323:91–100

  4. Jacoby GA (2009) AmpC β-lactamases. Clin Microbiol Rev 22:161–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ortega A, Oteo J, Aranzamendi-Zaldumbide M, Bartolomé RM, Bou G, Cercenado E, Conejo MC, González-López JJ, Marín M, Martínez-Martínez L, Merino M, Navarro F, Oliver A, Pascual A, Rivera A, Rodríguez-Baño J, Weber I, Aracil B, Campos J (2012) Spanish multicenter study of the epidemiology and mechanisms of amoxicillin-clavulanate resistance in Escherichia coli. Antimicrob Agents Chemother 56:3576–3581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Mata C, Miró E, Alvarado A, Garcillán-Barcia MP, Toleman M, Walsh TR, de la Cruz F, Navarro F (2012) Plasmid typing and genetic context of AmpC β-lactamases in Enterobacteriaceae lacking inducible chromosomal ampC genes: findings from a Spanish hospital 1999–2007. J Antimicrob Chemother 67:115–22

    Article  CAS  PubMed  Google Scholar 

  7. Bauernfeind A, Grimm H, Schweighart S (1990) A new plasmidic cefotaximase in a clinical isolate of Escherichia coli. Infection 18:294–298

    Article  CAS  PubMed  Google Scholar 

  8. Decré D, Verdet C, Raskine L, Blanchard H, Burghoffer B, Philippon A, Sanson-Le-Pors MJ, Petit JC, Arlet G (2002) Characterization of CMY-type beta-lactamases in clinical strains of Proteus mirabilis and Klebsiella pneumoniae isolated in four hospitals in the Paris area. J Antimicrob Chemother 50:681–688

    Article  PubMed  Google Scholar 

  9. Wachino J, Kurokawa H, Suzuki S, Yamane K, Shibata N, Kimura K, Ike Y, Arakawa Y (2006) Horizontal transfer of bla CMY-bearing plasmids among clinical Escherichia coli and Klebsiella pneumoniae isolates and emergence of cefepime-hydrolyzing CMY-19. Antimicrob Agents Chemother 50:534–541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Livermore DM (1995) Beta-lactamases in laboratory and clinical resistance. Clin Microbiol Rev 8:557–84

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Nordmann P, Mammeri H (2007) Extended-spectrum cephalosporinases: structure, detection and epidemiology. Future Microbiol 2:297–307

    Article  CAS  PubMed  Google Scholar 

  12. Dahyot S, Mammeri H (2012) Hydrolysis spectrum extension of CMY-2-like β-lactamases resulting from structural alteration in the Y-X-N loop. Antimicrob Agents Chemother 56:1151–1156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Rodríguez-Martínez JM, Fernández-Echauri P, Fernández-Cuenca F, Diaz de Alba P, Briales A, Pascual A (2012) Genetic characterization of an extended-spectrum AmpC cephalosporinase with hydrolysing activity against fourth-generation cephalosporins in a clinical isolate of Enterobacter aerogenes selected in vivo. J Antimicrob Chemother 67:64–68

    Article  PubMed  Google Scholar 

  14. Heininger A, Binder M, Schmidt S, Unertl K, Botzenhart K, Döring G (1999) PCR and blood culture for detection of Escherichia coli bacteremia in rats. J Clin Microbiol 37:2479–2482

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt ER, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  16. Clinical and Laboratory Standards Institute (CLSI) (2014) Performance standards for antimicrobial susceptibility testing. Twenty-fourth informational supplement M100-S24. National Committee for clinical Laboratory Standards, Wayne

    Google Scholar 

  17. Tan TY, Ng LS, He J, Koh TH, Hsu LY (2009) Evaluation of screening methods to detect plasmid-mediated AmpC in Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Antimicrob Agents Chemother 53:146–149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Drieux L, Brossier F, Sougakoff W, Jarlier V (2008) Phenotypic detection of extended-spectrum beta-lactamase production in Enterobacteriaceae: review and bench guide. Clin Microbiol Infect 14(Suppl 1):90–103

    Article  CAS  PubMed  Google Scholar 

  19. Gautom RK (1997) Rapid pulsed-field gel electrophoresis protocol for typing of Escherichia coli O157:H7 and other gram-negative organisms in 1 day. J Clin Microbiol 35:2977–2980

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Clermont O, Bonacorsi S, Bingen E (2000) Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 66:4555–4558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Costa D, Vinué L, Poeta P, Coelho AC, Matos M, Sáenz Y, Somalo S, Zarazaga M, Rodrigues J, Torres C (2009) Prevalence of extended-spectrum beta-lactamase-producing Escherichia coli isolates in faecal samples of broilers. Vet Microbiol 138:339–44

    Article  CAS  PubMed  Google Scholar 

  22. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ (2005) Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63:219–228

    Article  CAS  PubMed  Google Scholar 

  23. Porres-Osante N, Azcona-Gutiérrez JM, Rojo-Bezares B, Undabeitia E, Torres C, Sáenz Y (2014) Emergence of a multiresistant KPC-3 and VIM-1 carbapenemase-producing Escherichia coli strain in Spain. J Antimicrob Chemother 69:1792–1795

    Article  CAS  PubMed  Google Scholar 

  24. Salverda ML, De Visser JA, Barlow M (2010) Natural evolution of TEM-1 β-lactamase: experimental reconstruction and clinical relevance. FEMS Microbiol Rev 34:1015–1036

    CAS  PubMed  Google Scholar 

  25. Briñas L, Zarazaga M, Sáenz Y, Ruiz-Larrea F, Torres C (2002) Beta-lactamases in ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. Antimicrob Agents Chemother 46:3156–3163

    Article  PubMed Central  PubMed  Google Scholar 

  26. Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, Caporaso JG, Knights D, Clemente JC, Nakielny S, Gordon JI, Fierer N, Knight R (2013) Cohabiting family members share microbiota with one another and with their dogs. Elife 2:e00458

    PubMed Central  PubMed  Google Scholar 

  27. Verdet C, Gautier V, Chachaty E, Ronco E, Hidri N, Decré D, Arlet G (2009) Genetic context of plasmid-carried bla CMY-2-like genes in Enterobacteriaceae. Antimicrob Agents Chemother 53:4002–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Miró E, Agüero J, Larrosa MN, Fernández A, Conejo MC, Bou G, González-López JJ, Lara N, Martínez-Martínez L, Oliver A, Aracil B, Oteo J, Pascual A, Rodríguez-Baño J, Zamorano L, Navarro F (2013) Prevalence and molecular epidemiology of acquired AmpC β-lactamases and carbapenemases in Enterobacteriaceae isolates from 35 hospitals in Spain. Eur J Clin Microbiol Infect Dis 32:253–259

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

During the time this study was carried out, N. Porres-Osante had a predoctoral fellowship from Instituto de Salud Carlos III (FI09/00466) and S. Somalo a contract associated with project SAF2009-08570 from the Ministerio de Economía y Competitividad of Spain. This work was partially supported by the Ministerio de Economía y Competitividad of Spain (project SAF2012-35474) and Fondo Europeo de Desarrollo Regional (FEDER) and the Instituto de Salud Carlos III of Spain (project FIS PI12/01276).

Part of this study was presented at the XV Congreso de la Sociedad Española de Enfermedades Infecciosas (SEIMC) (P701, Málaga, Spain, 1–4 June 2011).

Conflict of Interest

None to declare

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolanda Sáenz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porres-Osante, N., Sáenz, Y., Somalo, S. et al. Characterization of Beta-lactamases in Faecal Enterobacteriaceae Recovered from Healthy Humans in Spain: Focusing on AmpC Polymorphisms. Microb Ecol 70, 132–140 (2015). https://doi.org/10.1007/s00248-014-0544-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0544-9

Keywords

Navigation