Skip to main content
Log in

Diversity and Geographical Distribution of Flavobacterium psychrophilum Isolates and Their Phages: Patterns of Susceptibility to Phage Infection and Phage Host Range

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Flavobacterium psychrophilum is an important fish pathogen worldwide that causes cold water disease (CWD) or rainbow trout fry syndrome (RTFS). Phage therapy has been suggested as an alternative method for the control of this pathogen in aquaculture. However, effective use of bacteriophages in disease control requires detailed knowledge about the diversity and dynamics of host susceptibility to phage infection. For this reason, we examined the genetic diversity of 49 F. psychrophilum strains isolated in three different areas (Chile, Denmark, and USA) through direct genome restriction enzyme analysis (DGREA) and their susceptibility to 33 bacteriophages isolated in Chile and Denmark, thus covering large geographical (>12,000 km) and temporal (>60 years) scales of isolation. An additional 40 phage-resistant isolates obtained from culture experiments after exposure to specific phages were examined for changes in phage susceptibility against the 33 phages. The F. psychrophilum and phage populations isolated from Chile and Denmark clustered into geographically distinct groups with respect to DGREA profile and host range, respectively. However, cross infection between Chilean phage isolates and Danish host isolates and vice versa was observed. Development of resistance to certain bacteriophages led to susceptibility to other phages suggesting that “enhanced infection” is potentially an important cost of resistance in F. psychrophilum, possibly contributing to the observed co-existence of phage-sensitive F. psychrophilum strains and lytic phages across local and global scales. Overall, our results showed that despite the identification of local communities of phages and hosts, some key properties determining phage infection patterns seem to be globally distributed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nematollahi A, Decostere A, Pasmans F, Haesebrouck F (2003) Flavobacterium psychrophilum infections in salmonid fish. J Fish Dis 26:563–574

    Article  CAS  PubMed  Google Scholar 

  2. Nicolas P, Mondot S, Achaz G, Bouchenot C, Bernardet JF, Duchaud E (2008) Population structure of the fish-pathogenic bacterium Flavobacterium psychrophilum. Appl Environ Microbiol 74:3702–3709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Lorenzen E, Dalsgaard I, From J, Hansen EM, Herrlyck V, Korsholm H, Mellergaard S, Olesen NJ (1991) Preliminary investigations of fry mortality syndrome in rainbow trout. Bull Eur Assoc Fish Pathol 11:77–79

    Google Scholar 

  4. Valdebenito S, Avendaño-Herrera R (2009) Phenotypic, serological and genetic characterization of Flavobacterium psychrophilum strains isolated from salmonids in Chile. J Fish Dis 32:321–333

    Article  CAS  PubMed  Google Scholar 

  5. Madsen L, Bertelsen SK, Dalsgaard I, Middelboe M (2013) Dispersal and survival of Flavobacterium psychrophilum phages in vivo in rainbow trout and in vitro under laboratory conditions: implications for their use in phage therapy. Appl Environ Microbiol 79:4853–4861

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Bruun MS, Schmidt AS, Madsen L, Dalsgaard I (2000) Antimicrobial resistance patterns in Danish isolates of Flavobacterium psychrophilum. Aquaculture 187:201–212

    Article  CAS  Google Scholar 

  7. Hesami S, Parkman J, MacInnes JI, Gray JT, Gyles CL, Lumsden JS (2010) Antimicrobial susceptibility of Flavobacterium psychrophilum isolates from Ontario. J Aquat Anim Health 22:39–49

    Article  PubMed  Google Scholar 

  8. Fredriksen BN, Olsen RH, Furevik A, Souhoka RA, Gauthier D, Brudeseth B (2013) Efficacy of a divalent and a multivalent water-in-oil formulated vaccine against a highly virulent strain of Flavobacterium psychrophilum after intramuscular challenge of rainbow trout (Oncorhynchus mykiss). Vaccine 31:1994–1998

    Article  CAS  PubMed  Google Scholar 

  9. Inbeault S, Parent S, Lagacé M, Uhland C, Blais J (2006) Using bacteriophages to prevent furunculosis caused by Aeromonas salmonicida in farmed brook trout. J Aquat Anim Health 18:203–214

    Article  Google Scholar 

  10. Chow MS, Rouf MA (1983) Isolation and partial characterization of two Aeromonas hydrophila bacteriophages. Appl Environ Microbiol 45:1670–1676

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Hsu CH, Lo CY, Liu JK, Lin CS (2000) Control of the eel (Anguilla japonica) pathogens, Aeromonas hydrophila and Edwardsiella tarda, by bacteriophages. J Fish Soc Taiwan 27:21–31

    CAS  Google Scholar 

  12. Stevenson RMW, Aidrie DW (1984) Isolation of Yersinia ruckeri bacteriophages. Appl Environ Microbiol 66:1416–1422

    Google Scholar 

  13. Nakai T, Sugimoto K, Park H, Matsuoka S, Mori K, Nishioka T, Maruyama K (1999) Protective effects of bacteriophage on experimental Lactococcus garvieae infection in yellowtail. Dis Aquat Organ 37:33–41

    Article  CAS  PubMed  Google Scholar 

  14. Park SC, Shimamura I, Fukunaga M, Mori T, Nakai T (2000) Isolation of bacteriophages specific to a fish pathogen, Pseudomonas plecoglossicida, as a candidate for disease control. Appl Environ Microbiol 66:1416–1422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Stenholm AR, Dalsgaard I, Middelboe M (2008) Isolation and characterization of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 74:4070–4078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kim JH, Gomez DK, Nakai T, Park SC (2010) Isolation and identification of bacteriophages infecting ayu Plecoglossus altivelis altivelis specific Flavobacterium psychrophilum. Vet Microbiol 140:109–115

    Article  CAS  PubMed  Google Scholar 

  17. Castillo D, Higuera G, Villa M, Middelboe M, Dalsgaard I, Madsen L, Espejo RT (2012) Diversity of Flavobacterium psychrophilum and the potential use of its phages for protection against bacterial cold water disease in salmonids. J Fish Dis 35:193–201

    Article  CAS  PubMed  Google Scholar 

  18. Middelboe M (2000) Bacterial growth rate and marine virus-host dynamics. Microb Ecol 40:114–124

    PubMed  Google Scholar 

  19. Middelboe M, Hagström A, Blackburn N, Sinn B, Fischer U, Borch NH, Pinhassi J, Simu K, Lorenz MG (2001) Effects of bacteriophages on the population dynamics of four strains of pelagic marine bacteria. Microb Ecol 42:395–406

    Article  CAS  PubMed  Google Scholar 

  20. Middelboe M, Holmfeldt K, Riemann L, Nybroe O, Haaber J (2009) Bacteriophages drive strain diversification in a marine Flavobacterium: implications for phage resistance and physiological properties. Environ Microbiol 11:1971–1982

    Article  CAS  PubMed  Google Scholar 

  21. Lenski RE (1984) Coevolution of bacteria and phage: are there endless cycles of bacterial defenses and phage counterdefenses? J Theor Biol 108:319–325

    Article  CAS  PubMed  Google Scholar 

  22. Bohannan BJM, Lenski RE (2000) Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol lett 3:362–377

    Article  Google Scholar 

  23. Liu M, Deora R, Doulatov SR, Gingery M, Eiserling FA, Preston A, Maskell DJ, Simons RW, Cotter PA, Parkhill J, Miller JF (2002) Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science 295:2091–2094

    Article  CAS  PubMed  Google Scholar 

  24. Krüger DH, Bickle TA (1983) Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol Rev 47:345–360

    PubMed Central  PubMed  Google Scholar 

  25. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  CAS  PubMed  Google Scholar 

  26. McDaniel L, Houchin LA, Williamson SJ, Paul JH (2002) Lysogeny in marine Synechococcus. Nature 415:496

    Article  CAS  PubMed  Google Scholar 

  27. Castillo D, Espejo R, Middelboe M (2014) Genomic structure of bacteriophage 6H and its distribution as prophage in Flavobacterium psychrophilum strains. FEMS Microbiol Lett 351:51–58

    Google Scholar 

  28. Ramsrud AL, LaFrentz SA, LaFrentz BR, Cain KD, Call DR (2007) Differentiating 16S rRNA alleles of Flavobacterium psychrophilum using a simple PCR assay. J Fish Dis 30:175–180

    Article  CAS  PubMed  Google Scholar 

  29. González-Escalona N, Romero J, Guzman CA, Espejo RT (2006) Variation in the 16S-23S rRNA intergenic spacer regions in Vibrio parahaemolyticus strains are due to indels nearby their tRNAGlu. FEMS Microbiol Lett 256:38–43

    Article  PubMed  Google Scholar 

  30. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A 76:5269–5273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Van de Peer Y, De Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570

    PubMed  Google Scholar 

  32. Mazzocco A, Waddell TE, Lingohr E, Johnson RP (2009) Enumeration of bacteriophages using the small drop plaque assay system. Methods Mol Biol 501:81–85

    Article  CAS  PubMed  Google Scholar 

  33. Hyman P, Abendon ST (2009) Practical methods for determining phage growth parameters. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages: methods and protocols, volume 1: isolation, characterization and interactions, 1st edn. Humana, New York, pp 175–202

    Google Scholar 

  34. Siekoula-Nguedia C, Blanc G, Duchaud E, Calvez S (2012) Genetic diversity of Flavobacterium psychrophilum isolated from rainbow trout in France: predominance of a clonal complex. Vet Microbiol 161:169–178

    Article  CAS  PubMed  Google Scholar 

  35. Bernardet JF, Kerouault B (1989) Phenotypic and genomic studies of "Cytophaga psychrophila" isolated from diseased rainbow trout (Oncorhynchus mykiss) in France. Appl Environ Microbiol 55:1796–1800

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Apablaza P, Løland AD, Brevik OJ, Ilardi P, Battaglia J, Nylund A (2013) Genetic variation among Flavobacterium psychrophilum isolates from wild and farmed salmonids in Norway and Chile. J Appl Microbiol 114:934–946

    Article  CAS  PubMed  Google Scholar 

  37. Chakroun C, Grimont F, Urdaci MC, Bernardet JF (1998) Fingerprinting of Flavobacterium psychrophilum isolates by ribotyping and plasmid profiling. Dis Aquat Organ 33:167–177

    Article  CAS  PubMed  Google Scholar 

  38. Holmfeldt K, Middelboe M, Nybroe O, Riemann L (2007) Large variabilities in host strain susceptibility and phage host range govern interactions between lytic marine phages and their Flavobacterium hosts. Appl Environ Microbiol 73:6730–6739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Bustos PA, Calbuyahue J, Montaña J, Opazo B, Entrala P, Solervicens R (1995) First isolation of Flexibacter psychrophilum, as causative agent of rainbow trout mortality in Chile. Bull Eur Assoc Fish Pathol 15:162–164

    Google Scholar 

  40. Chakroun C, Urdaci MC, Faure D, Grimont F, Bernardet JF (1997) Random amplified polymorphic DNA analysis provides rapid differentiation among isolates of the fish pathogen Flavobacterium psychrophilum and among Flavobacterium species. Dis Aquat Organ 31:187–196

    Article  CAS  Google Scholar 

  41. Ceyssens PJ, Glonti T, Kropinski NM, Lavigne R, Chanishvili N, Kulakov L, Lashkhi N, Tediashvili M, Merabishvili M (2011) Phenotypic and genotypic variations within a single bacteriophage species. Virol J 8:134–138

    Article  PubMed Central  PubMed  Google Scholar 

  42. Lenski RE (1988) Dynamics of interactions between bacteria and virulent bacteriophage. Adv Microb Ecol 10:1–44

    Article  CAS  Google Scholar 

  43. Stoddard LI, Martiny JB, Marston MF (2007) Selection and characterization of cyanophage resistance in marine Synechococcus strains. Appl Environ Microbiol 73:5516–5522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Avrani S, Wurtzel O, Sharon I, Sorek R, Lindell D (2011) Genomic island variability facilitates Prochlorococcus-virus coexistence. Nature 474:604–608

    Article  CAS  PubMed  Google Scholar 

  45. Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327

    Article  CAS  PubMed  Google Scholar 

  46. Lu MJ, Henning U (1994) Superinfection exclusion by T-even-type coliphages. Trends Microbiol 2:137–139

    Article  CAS  PubMed  Google Scholar 

  47. Gill JJ, Hyman P (2010) Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol 11:2–14

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Grant INNOVA 07CN13PPT-09 of CORFO-Chile, by a grant from The Danish Council for Independent Research (FNU-09-072829) and The Danish Directorate for Food, Fisheries and Agri Business (ProAqua, project # 09-072829) to MM and by the EU-IRSES-funded project AQUAPHAGE to MM and RE. Lone Madsen and Inger Dalsgaard are acknowledged for providing access to the F. psychrophilum collection at the Danish Technical University (DTU Vet).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Castillo.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 292 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castillo, D., Christiansen, R.H., Espejo, R. et al. Diversity and Geographical Distribution of Flavobacterium psychrophilum Isolates and Their Phages: Patterns of Susceptibility to Phage Infection and Phage Host Range. Microb Ecol 67, 748–757 (2014). https://doi.org/10.1007/s00248-014-0375-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0375-8

Keywords

Navigation