Skip to main content

Advertisement

Log in

To What Extent Do Food Preferences Explain the Trophic Position of Heterotrophic and Mixotrophic Microbial Consumers in a Sphagnum Peatland?

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Although microorganisms are the primary drivers of biogeochemical cycles, the structure and functioning of microbial food webs are poorly studied. This is the case in Sphagnum peatlands, where microbial communities play a key role in the global carbon cycle. Here, we explored the structure of the microbial food web from a Sphagnum peatland by analyzing (1) the density and biomass of different microbial functional groups, (2) the natural stable isotope (δ 13C and δ 15N) signatures of key microbial consumers (testate amoebae), and (3) the digestive vacuole contents of Hyalosphenia papilio, the dominant testate amoeba species in our system. Our results showed that the feeding type of testate amoeba species (bacterivory, algivory, or both) translates into their trophic position as assessed by isotopic signatures. Our study further demonstrates, for H. papilio, the energetic benefits of mixotrophy when the density of its preferential prey is low. Overall, our results show that testate amoebae occupy different trophic levels within the microbial food web, depending on their feeding behavior, the density of their food resources, and their metabolism (i.e., mixotrophy vs. heterotrophy). Combined analyses of predation, community structure, and stable isotopes now allow the structure of microbial food webs to be more completely described, which should lead to improved models of microbial community function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thompson RM, Brose U, Dunne JA, Hall RO Jr, Hladyz S, Kitching RL, Martinez ND, Rantala H, Romanuk TN, Stouffer DB, Tylianakis JM (2012) Food webs: reconciling the structure and function of biodiversity. Trends Ecol Evol 27:689–697

    Article  PubMed  Google Scholar 

  2. Bascompte J (2010) Structure and dynamics of ecological networks. Science 329:765–766

    Article  CAS  PubMed  Google Scholar 

  3. De Deyn GB, Raaijmakers CE, van Ruijven J, Berendse F, van der Putten WH (2004) The response of nematodes from different trophic levels in the soil food web to the identity and diversity of plant species. Oikos 106:576–586

    Article  Google Scholar 

  4. Ings TC, Montoya JM, Bascompte J, Blüthgen N, Brown L, Dormann CF, Edwards F, Figueroa D, Jacob U, Jones JI, Lauridsen RB, Ledger ME, Lewis HM, Olesen JM, Van Veen FJF, Warren PH, Woodward G (2009) Ecological networks—beyond food webs. J Anim Ecol 78:253–269

    Article  PubMed  Google Scholar 

  5. Rooney N, McCann KS (2012) Integrating food web diversity, structure and stability. Trends Ecol Evol 27:40–46

    Article  PubMed  Google Scholar 

  6. Stouffer DB, Sales-Pardo M, Sirer MI, Bascompte J (2012) Evolutionary conservation of species’ roles in food webs. Science 335:1489–1492

    Article  CAS  PubMed  Google Scholar 

  7. Kuwae T, Miyoshi E, Hosokawa S, Ichimi K, Hosoya J, Amano T, Moriya T, Kondoh M, Ydenberg RC, Elner RW (2012) Variable and complex food web structures revealed by exploring missing trophic links between birds and biofilm. Ecol Lett 15:347–356

    Article  PubMed  Google Scholar 

  8. Pascal PY, Dupuy C, Richard P, Rzeznik-Orignac J, Niquil N (2008) Bacterivory of a mudflat nematode community under different environmental conditions. Mar Biol 154:671–682

    Article  Google Scholar 

  9. Petchey OL, McPhearson PT, Casey TM, Morin PJ (1999) Environmental warming alters food-web structure and ecosystem function. Nature 402:69–72

    Article  CAS  Google Scholar 

  10. Tittel J, Bissinger V, Zippel B, Gaedke U, Bell E, Lorke A, Kamjunke N (2003) Mixotrophs combine resource use to outcompete specialists: implications for aquatic food webs. Proc Natl Acad Sci U S A 100:12776–12781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Wilken S, Huisman J, Naus-Wiezer S, Donk E (2013) Mixotrophic organisms become more heterotrophic with rising temperature. Ecol Lett 16:225–233

    Article  PubMed  Google Scholar 

  12. Jassey VEJ, Shimano S, Dupuy C, Toussaint ML, Gilbert D (2012) Characterizing the feeding habits of the testate amoebae Hyalosphenia papilio and Nebela tincta along a narrow “Fen-Bog” gradient using digestive vacuole content and 13C and 15N isotopic analyses. Protist 163:451–464

    Article  PubMed  Google Scholar 

  13. Anderson C, Cabana G (2009) Anthropogenic alterations of lotic food web structure, evidence from the use of nitrogen isotopes. Oikos 118:1929–1939

    Article  Google Scholar 

  14. Carscallen WMA, Vanderberg K, Lawson JM, Martinez ND, Romanuk TN (2012) Estimating trophic position in marine and estuarine food webs. Ecosphere 3:1–20

    Article  Google Scholar 

  15. Mao ZG, Gu XH, Zeng QF, Zhou LH, Sun MB (2012) Food web structure of a shallow eutrophic lake (Lake Taihu, China) assessed by stable isotope analysis. Hydrobiol 683:173–183

    Article  CAS  Google Scholar 

  16. Schmidt SN, Olden JD, Solomon CT, Vander Zanden MJ (2007) Quantitative approaches to the analysis of stable isotope food web data. Ecology 88:2793–2802

    Article  PubMed  Google Scholar 

  17. Vander Zanden MJ, Rasmussen JB (1999) Primary consumer delta C-13 and delta N-15 and the trophic position of aquatic consumers. Ecology 80:1395–1404

    Article  Google Scholar 

  18. Mitchell EAD, Charman DJ, Warner BG (2008) Testate amoebae analysis in ecological and paleoecological studies of wetlands, past, present and future. Biodivers Conserv 17:2115–2137

    Article  Google Scholar 

  19. Gilbert D, Amblard C, Bourdier G, Francez AJ, Mitchell EAD (2000) Le régime alimentaire des thécamoebiens (Protista, Sarcodina). Année Biol 3:57–68

    Google Scholar 

  20. Gilbert D, Mitchell EAD, Amblard C, Bourdier G, Francez AJ (2003) Population dynamics and food preferences of the testate amoeba Nebela tincta major–bohemica–collaris complex (Protozoa) in a Sphagnum peatland. Acta Protozool 42:99–104

    Google Scholar 

  21. Laybourn J, Whymant L (1980) The effect of diet and temperature on reproductive rate in Arcella vulgaris Ehrenberg (Sarcodina, Testacida). Oecologia 45:282–284

    Article  Google Scholar 

  22. Yeates GW, Foissner W (1995) Testate amoebae as predators of nematodes. Biol Fertil Soils 20:1–7

    Article  Google Scholar 

  23. Meyer C, Bernard N, Moskura M, Toussaint ML, Denayer F, Gilbert D (2010) Effects of urban particulate deposition on microbial communities living in bryophytes, an experimental study. Ecotoxicol Environ Saf 73:1776–1784

    Article  CAS  PubMed  Google Scholar 

  24. Meyer C, Gilbert D, Gillet F, Moskura M, Franchi M, Bernard N (2012) Using bryophyte–testate amoebae microsystems as indicators of atmospheric pollution at three different sites (rural, urban and industrial). Ecol Indic 13:144–151

    Article  CAS  Google Scholar 

  25. Meyer C, Desalme D, Bernard N, Binet P, Toussaint ML, Gilbert D (2013) Using testate amoebae as potential biointegrators of atmospheric deposition of phenanthrene (polycyclic aromatic hydrocarbon) on “moss/soil interface–testate amoebae community” microecosystems. Ecotoxicology 22:287–294

    Article  CAS  PubMed  Google Scholar 

  26. Aoki Y, Hoshino M, Matsubara T (2007) Silica and testate amoebae in a soil under pine-oak forest. Geoderma 142:29–35

    Article  CAS  Google Scholar 

  27. Jassey VEJ, Chiapusio G, Binet P, Buttler A, Laggoun-Défarge F, Delarue F, Bernard N, Mitchell EAD, Toussaint ML, Francez AJ, Gilbert D (2013) Above- and belowground linkages in Sphagnum-peatland: warming affects plant–microbial interactions. Glob Chang Biol 19:811–823

    Article  PubMed  Google Scholar 

  28. Schröter D, Wolters V, De Ruiter PC (2003) C and N mineralization in the decomposer food webs of a European forest transect. Oikos 102:294–308

    Article  Google Scholar 

  29. Wilkinson DM, Mitchell EAD (2010) Testate amoebae and nutrient cycling with particular reference to soils. Geomicrobiol J 27:520–533

    Article  Google Scholar 

  30. Fournier B, Malysheva E, Mazei Y, Moretti M, Mitchell EAD (2012) Toward the use of testate amoeba functional traits as indicator of floodplain restoration success. Eur J Soil Biol 49:85–91

    Article  Google Scholar 

  31. Chacharonis P (1956) Observations on the ecology of protozoa associated with Sphagnum. J Protozool 3:11

    Google Scholar 

  32. Schönborn W (1965) Untersuchungen über die Zoochlorellen-Symbiose der Hochmorr-Testacean. Limnology 5:173–176

    Google Scholar 

  33. Booth RK, Sullivan ME, Sousa VA (2008) Ecology of testate amoebae in a North Carolina pocosin and their potential use as environmental and paleoenvironmental indicators. Ecoscience 15:277–289

    Article  Google Scholar 

  34. Heal OW (1962) Abundance and microdistribution of testate amoebae (Protozoa: Rhizopoda) in Sphagnum. Oikos 13:35–47

    Article  Google Scholar 

  35. Heal OW (1964) Observations on the seasonal and spatial-distribution of Testacea (Protozoa, Rhizopoda) in Sphagnum. J Anim Ecol 33:395–412

    Article  Google Scholar 

  36. Heal OW (1961) The distribution of testate amoebae (Rhizopoda: Testaecea) in some fens and bogs in Northern England. Zool J Linnean Soc 44:369–382

    Article  Google Scholar 

  37. Flynn KJ, Stoecker DK, Mitra A, Raven JA, Glibert PM, Hansen PJ, Graneli E, Burkholder JM (2012) Misuse of the phytoplankton–zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. J Plankton Res. doi:10.1093/plankt/fbs062

    Google Scholar 

  38. Hartmann M, Grob C, Tarran GA, Martin AP, Burkill PH, Scanlan DJ, Zubkov MV (2012) Mixotrophic basis of Atlantic oligotrophic ecosystems. Proc Natl Acad Sci U S A 109:5756–5760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Uthermölh H (1958) Zur vervollkommnung der quantative phytoplankton-methodik. Mitteilungen aus Institut Verhein Limnology 3:1–38

    Google Scholar 

  40. Bratbak G (1985) Bacterial biovolume and biomass estimations. Appl Environ Microbiol 49:1488–1493

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Weisse T, Muller H, Pintocoelho RM, Schweizer A, Springmann D, Baldringer G (1990) Response of the microbial loop to the phytoplankton spring bloom in a large prealpine lake. Limnol Oceanogr 35:781–794

    Article  Google Scholar 

  42. Gilbert D, Amblard C, Bourdier G, Francez AJ (1998) The microbial loop at the surface of a peatland, structure, function, and impact of nutrient input. Microb Ecol 35:83–93

    Article  CAS  PubMed  Google Scholar 

  43. Post DM (2002) The long and short of food-chain length. Trends Ecol Evol 17:269–277

    Article  Google Scholar 

  44. Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage, Thousand Oaks

  45. Oksanen J, Blanchet G, Kindt R, Legendre P, O’Hara RG, Simpson GL, Solymos P, Stevens MHH, Wagner H (2010) Vegan, community ecology package. R package version 1.17-1. Available at http://CRAN.R-project.org/package=vegan

  46. R Development Core Team (2012) R, a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  47. Kohzu A, Iwata T, Kato M, Nishikawa J, Wada E, Amartuvshin N, Namkhaidorj B, Fujita N (2009) Food webs in Mongolian grasslands: the analysis of 13C and 15N natural abundances. Isot Environ Health Stud 45:208–219

    Article  CAS  Google Scholar 

  48. Segers H (2008) Global diversity of rotifers (Rotifera) in freshwater. Hydrobiol 595:49–59

    Article  Google Scholar 

  49. Sharma BK (2005) Rotifer communities of floodplain lakes of the Brahmaputra basin of lower Assam (NE India), biodiversity, distribution and ecology. Hydrobiol 533:209–221

    Article  Google Scholar 

  50. Ponsard S, Arditi R, Jost C (2000) Assessing top-down and bottom-up control in a litter-based soil macroinvertebrate food chain. Oikos 89:524–540

    Article  Google Scholar 

  51. Scheu S, Falca M (2000) The soil food web beech forests (Fagus sylvatica) of contrasting hulus type: stable isotope analysis of a macro- and a mesofauna-dominated community. Oecol 123:285–296

    Article  Google Scholar 

  52. Akin S, Winemiller KO (2008) Body size and trophic position in a temperature estuarine food web. Acta Oecol 33:144–153

    Article  Google Scholar 

  53. Stephens DW, Krebs JR (1986) Foraging Theory. Princeton University Press, Princeton

    Google Scholar 

  54. Schneider FD, Scheu S, Brose U (2012) Body mass constraints on feeding rates determine the consequences of predator loss. Ecol Lett 15:436–443

    Article  PubMed  Google Scholar 

  55. Stouffer DB, Camacho J, Amaral LAN (2005) Quantitative analysis of the local structure of food webs. Ecology 86:1301–1311

    Article  Google Scholar 

  56. Brose U, Dunne JA, Montoya JM, Petchey OL, Schneider FD, Jacob U (2012) Climate change in size-structured ecosystems introduction. Phil Trans R Soc Biol Sci 367:2903–2912

    Article  Google Scholar 

  57. Barnes C, Maxwell D, Reuman DC, Jennings S (2010) Global patterns in predator–prey size relationships reveal size dependency of trophic transfer efficiency. Ecology 91:222–232

    Article  PubMed  Google Scholar 

  58. Heckmann L, Drossel B, Brose U, Guill C (2012) Interactive effects of body-size structure and adaptive foraging on food-web stability. Ecol Lett 15:243–250

    Article  PubMed  Google Scholar 

  59. Layman CA, Winemeller KO, Arrington DA, Jepsen DB (2005) Body size and trophic position in a diverse tropical food web. Ecology 86:2530–2535

    Article  Google Scholar 

  60. Thierry A, Petchey OL, Beckerman AP, Warren PH, Williams RJ (2011) The consequences of size dependent foraging for food web topology. Oikos 120:493–502

    Article  Google Scholar 

  61. Bergschneider H, Muller-Parker G (2008) Nutritional role of two algal symbionts in the temperate sea anemone Anthopleura elegantissima Brandt. Biol Bull 215:73–88

    Article  CAS  PubMed  Google Scholar 

  62. Lopez-Urrutia A, San Martin E, Harris RP, Irigoien X (2006) Scaling the metabolic balance of the oceans. Proc Natl Acad Sci U S A 103:8739–8744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Yvon-Durocher G, Jones JI, Trimmer M, Woodward G, Montoya JM (2010) Warming alters the metabolic balance of ecosystems. Philos Trans R Soc B Biol Sci 365:2117–2126

    Article  Google Scholar 

  64. 2Yeates GW, Bongers T, Degoede RGM, Freckman DW, Georgieva SS (1993) Feeding-habits in soil nematode families and genera—an outline for soil ecologists. J Nematol 25:315–331

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research is a contribution of the ANR PEATWARM project (Effect of moderate warming on the functioning of Sphagnum peatlands and their function as carbon sink) and the μPOL-AIR project (Use of Sphagnum-peatlands to quantify the deposition of long-range air pollutants and to evaluate their impact on environment). PEATWARM is supported by the French National Agency for Research under the “Vulnerability, Environment—Climate” Program (ANR-07-VUL-010) and μPOL-AIR by PRIMEQUAL program (support of French Ministry of Environment and ADEME) (2010-Q.3-Chorus2100082984). Further funding was provided to V.E.J.J. by the Franche-Comté Region, to C.M. by μPOL-AIR project, and to E.A.D.M. and A.P.C. by the University of Neuchâtel. The authors would like to thank T. Sime-Ngando and J. Colombet (University of Clermont-Ferrand, France) for their help with the flow cytometry and two anonymous reviewers for their valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent E. J. Jassey.

Additional information

Vincent E. J. Jassey and Caroline Meyer contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jassey, V.E.J., Meyer, C., Dupuy, C. et al. To What Extent Do Food Preferences Explain the Trophic Position of Heterotrophic and Mixotrophic Microbial Consumers in a Sphagnum Peatland?. Microb Ecol 66, 571–580 (2013). https://doi.org/10.1007/s00248-013-0262-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0262-8

Keywords

Navigation